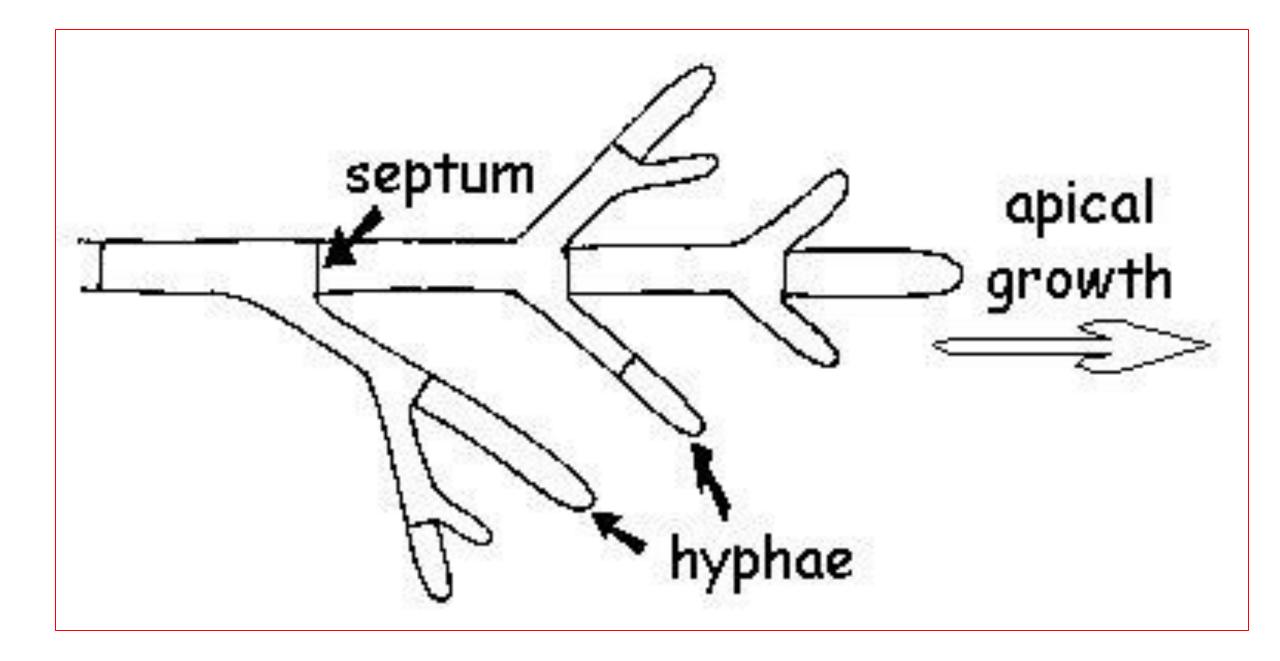
The Fungus

- **Eukaryotic**
- Spore bearing
- > Achlorophyllous organism
- Generally reproduce sexually and asexually
- Usually filamentous or branched somatic structure
- > Typically surrounded by cell walls
- > Containing chitin or cellulose or both together
- > With many other complex organic molecules

What Do Fungi Look Like?

- Mycelial (filamentous)
- Unicellular and primitively branched (Chytrids)
- Yeasts (unicellular)
- Dimorphism (Two morphological forms)

Thallus organization

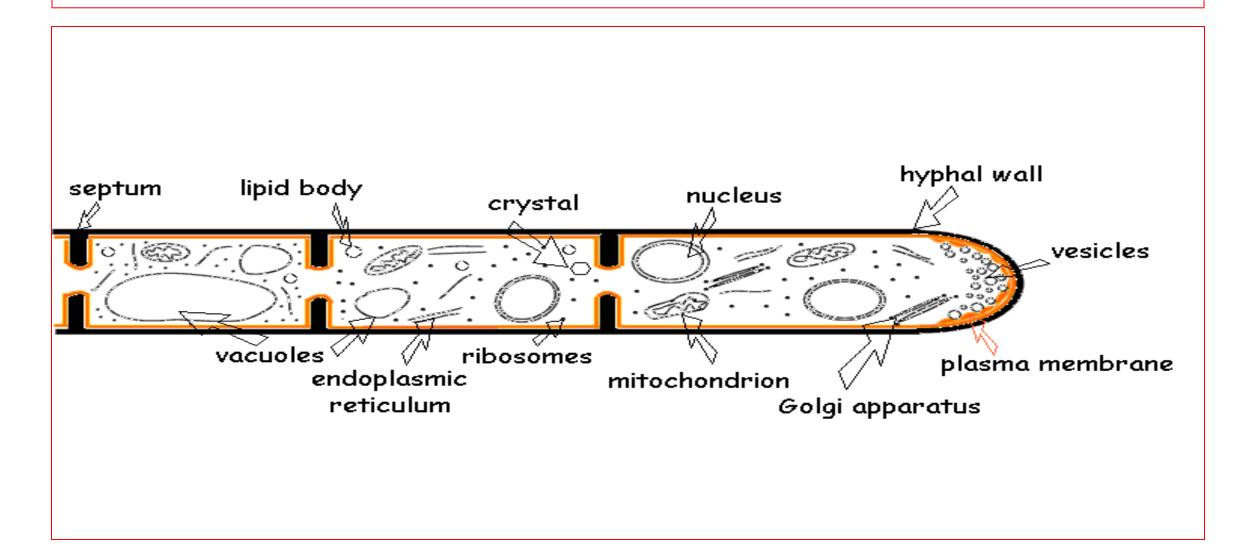

- Unicellular
- Thread like filaments
 - ✓ Simple Hypha/hyphae or mycelium (net work)
 - Holocarpic no differentiation
 - Eucarpic- differentiated in vegetative and reproductive parts
 - Coenoecytic or nonseptate with homokaryotic or heterokaryotic condition
 - Septate with simple solid septum or perforated and dolipore septum

Hyphal modifications and aggregates

- Rhizomorph around root
- Appressoria during early stage of infection
- Haustoria for absorption of nutrition from host
- Prosenchyma
- Pseudoparenchyma
- Stroma
- Sclerotium

General Characteristics of True Fungi (Mycota or Eumycota)

- All are eukaryotic Possess membrane-bound nuclei and a range of membrane-bound cytoplasmic organelles
- Most are filamentous Composed of individual microscopic filaments called hyphae, and which branch to form a network of hyphae called a mycelium
- Some are unicellulare.g. yeasts
- Protoplasm of a hypha or cell is surrounded by a rigid wall Composed primarily of chitin and glucans, some species contain cellulose.
- Many reproduce both sexually and asexually both sexual and asexual reproduction often result in the production of spores.

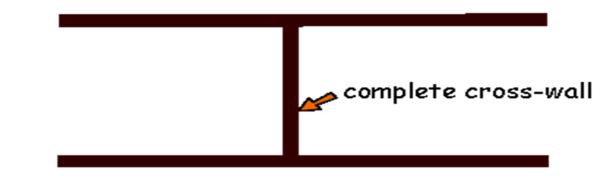

• Each HYPHA is:

- essentially a tube consisting of a rigid wall and containing protoplasm
- tapered at its tip this is the region of active growth (i.e. the extension zone)

- SEPTA (cross-walls), if present, can usually be observed down a light microscope
 - -some fungi possess septa at regular intervals along the lengths of their hyphae
 - -in others, cross-walls form only to isolate old or damaged regions of a hypha or to isolate reproductive structures

-some septa possess one of more PORES - such septa divide up the hyphae into a series of interconnected HYPHAL COMPARTMENTS, rather than separate, discrete cells

Diagrammatic cell structure

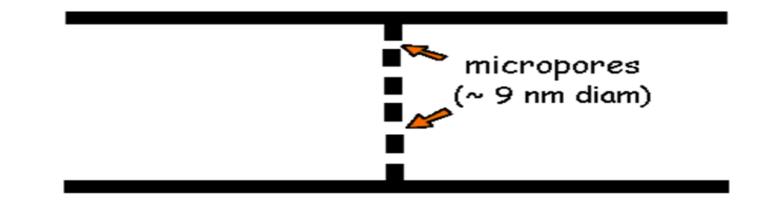

Septation in fungal mycelium

Electron microscopy has revealed that several different types of septa exist among the major taxonomic groups of fungi

- Oomycota and Zygomycota
- Ascomycota
- Some other mitosporic fungi
- Basidiomycota

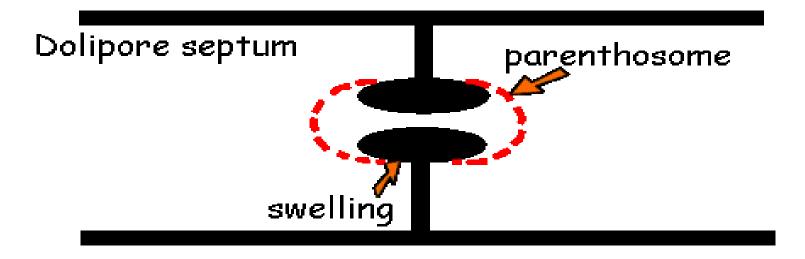
Septation in Oomycota and Zygomycota

- In general, the hyphae of fungi belonging to these groups are not regularly septate
- But septa in the form of COMPLETE CROSS-WALLS are formed to isolate old or damaged regions of the mycelium or to separate reproductive structures from somatic hyphae.


Septation in Ascomycota

- Hyphae of fungi belonging to these groups possess perforated septa at regular intervals along their length.
- The septum consists of a simple plate with a relatively LARGE CENTRAL PORE (50-500 nm diameter) this allows cytoplasmic streaming (the movement of organelles, incl. nuclei) between adjacent hyphal compartments.
- Associated with each septum are spherical, membrane-bound organelles called WORONIN BODIES

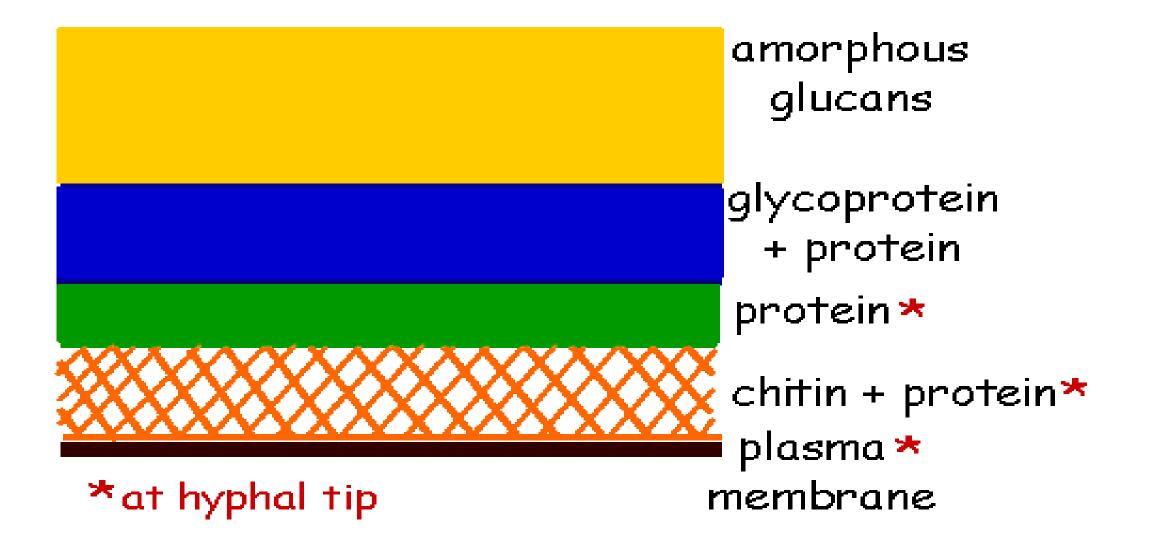
- The WORONIN BODIES are composed of protein;
- Remain close to the septal pore and tend not to be disturbed by the cytoplasmic streaming taking place;
- Tend to be of the same or larger diameter than the septal pore and are, therefore, capable of blocking the pore;
- Will block the septal pore if the adjacent hyphal compartment is damaged or ageing and becoming highly vacuolated.



- Some other mitosporic fungi may possess MULTIPERFORATE SEPTA
- E.g. the septa of *Geotrichum candidum* (illustrated above) possess characteristic MICROPORES (approx. 9 nm diameter)
- The number of pores in each septum can vary up to a maximum of approx. 50
- These micropores allow cytoplasmic continuity between adjacent hyphal compartments, but are too small to allow cytoplasmic streaming to occur to the extent observed in fungi possessing larger septal pores

Septation in Basidiomycota

- The most complex type of septum is found in fungi belonging to the Basidiomycota
- Each septum is characterized by a swelling around the central pore (DOLIPORE) and a hemispherical perforated cap (PARENTHOSOME) on either side of the pore
- The perforated parenthosome allows cytoplasmic continuity but prevents the movement of major organelles
- The plasma membrane lines both sides of the septum and the dolipore swelling, but the membrane of the parenthosome is derived from endoplasmic reticulum


Functions of septa

- Act as STRUCTURAL SUPPORTS
- Act as the FIRST LINE OF DEFENCE when part of a hypha is damaged
 - a mechanism exists for rapidly sealing the septal pore under conditions of stress (e.g. if the hypha is damaged) thereby helping protect the mycelium.
- Facilitate DIFFERENTIATION in fungi
 - Septa can isolate adjacent compartments from one another so that different biochemical and physiological processes can occur within them - these may result in differentiation of the hyphae into specialized structures, such as those associated with sporulation

The Fungal Wall

Functions :

- PROTECTS the underlying protoplasm;
- determines and MAINTAINS THE SHAPE of the fungal cell or hypha; if you remove the wall the resulting protoplast will always assume a spherical shape;
- acts as an INTERFACE between the fungus and its environment;
- acts as a BINDING SITE for some enzymes;
- possesses ANTIGENIC properties which allow interactions with other organisms.

Chemical composition of the wall

• POLYMERIC FIBRILS

- chitin
- cellulose (in the Oomycota)

AMORPHOUS MATRIX COMPONENTS

- glucans
- proteins
- lipids
- heteropolymers (mixed polymers) of mannose, galactose, fucose and xylose
- The types and amounts of these various components vary amongst different groups of fungi and may even vary during the life cycle of a single species.