STATISTICAL THERMODYNAMICS Part-B

 Lecture - 3: Quantum Statistics (M.Sc. Sem -II/ Chemistry, Paper -III, Unit - II)DR. SUNITHA B. MATHEW
Govt. V. Y. T. PG Autonomous College
Durg

Statistical Thermodynamics

Contents:

- Recapitulation: Maxwell - Boltzmann Distribution Law
- Limitations of Maxwell - Boltzmann Statistics
- Bose - Einstein Statistics
- Fermi - Dirac Statistics
- Comparison of the three Statistics

STATISTICAL THERMODYNAMICS

Bulk / Macroscopic System

Nature of microscopic constituents \& Occupancy of the energy level

Different Statistics

PARTICLE STATISTICS

CLASSICAL STATISTICS

QUANTUM

STATISTICS
Internal structure ignored
Particles distinguishable

Internal structure considered

Particles indistinguishable

FERMI -DIRAC
STATISTICS

Restriction On

MAXWELL - BOLTZMANN DISTRIBUTION : Classical Statistics

- Bulk/ macroscopic system with the following conditions:
- Consist of \mathbf{N} distinguishable particles with total energy \mathbf{E} at temperature \mathbf{T}
- No interaction between particles
- No restriction on Occupancy of energy levels
- Total number of particles \mathbf{N} and energy \mathbf{E} must remain constant

$$
\Sigma \mathbf{N}_{\mathrm{i}}=\mathbf{N} \text { and } \Sigma \mathrm{N}_{\mathrm{i}} \varepsilon_{\mathrm{i}}=\mathrm{E} ; \quad \Sigma \delta \mathrm{N}_{\mathrm{i}}=0 \text { and } \quad \Sigma \varepsilon_{i} \delta \mathrm{~N}_{\mathrm{i}}=0
$$

- Such particles are called Boltzmannons or Maxwellons e.g. System composed of gas
- No. of ways of achieving :

$$
W=\frac{N!}{N_{0}!N_{1}!N_{2}!\ldots \ldots}
$$

- Maxwell- Boltzmann Distribution Law:

$$
\mathbf{N}_{\mathbf{i}}=\mathbf{g}_{\mathrm{i}} \mathbf{e}^{-\alpha} \mathrm{e}^{-\varepsilon_{i} / k T}
$$

Limitations of Maxwell - Boltzmann Distribution law

- Maxwell- Boltzmann statistics is based on Classical Mechanics: Classical Statistics, so is valid only within classical limit
- Not valid at very low temperature and very high particle density, where quantum effects become significant
- Satisfactorily explains pressure, temperature, etc. of gaseous systems
- But can we distinguish between gas molecules? In the light of Quantum theory, this leads to that this law is only an approximation \& is valid for gases at comparatively low density
- Couldn't explain some experimental results like black body radiation distribution, specific heat at low temperature, etc.
- In case of photon gas, according to M-B distribution there is continuous no. of photons per unit range of frequency as it increases which is contradicted by Planck's law
- The molar heat capacity of a metal is $3 R$ but according to $M-B$ Statistics free electron contributes $3 R / 2$

BOSE - EINSTEIN STATISTICS : DERIVATION

- Suppose we have a bulk/ macroscopic system with the following conditions:
- Consist of \mathbf{N} indistinguishable particles with total energy E at temperature T
- Total number of particles and energy must remain conserved
- No restriction on Occupancy of energy states
- Internal structure taken into consideration
- Particle have zero or integral spin eg. Photon, mesons, ${ }^{4} \mathrm{He},{ }^{2} \mathrm{H}$,
- The wave function is symmetric
- Such particles are called Bosons

\qquad

\qquad
- Consider four particles distributed in two energy levels in such a way that there are
- 3 particles in 1ε and 1 particle in 0ε then no. of microstates according to

Maxwell- Boltzmann Statistics

Bose -Einstein Statistics

- Now if each energy levels have $\boldsymbol{g}_{i}=4$ energy states, then no. of microstates will be

Derivation of Bose - Einstein Distribution

- Most Probable Distribution ???
- The one with maximum no. of microstates or gives Maximum Thermodynamic Probability
- $\mathbf{W}_{\text {max }}: \delta \mathbf{W}(N)=0$ or $\delta \ln \mathbf{W}(N)=0$
- Consider the distribution of \mathbf{N} identical and indistinguishable particles among various energy levels $-\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \ldots \ldots$. having $g_{0}, g_{1}, g_{2}, \ldots . . .$. energy states with Total energy \mathbf{E} at temperature \mathbf{T}
- Total number of particles \mathbf{N} and Total energy \mathbf{E} remains constant

$$
\begin{gathered}
\Sigma \mathbf{N}_{\mathrm{i}}=\mathbf{N} \text { and } \Sigma \mathrm{N}_{\mathrm{i}} \varepsilon_{\mathrm{i}}=\mathrm{E} \\
\Sigma \delta \mathbf{N}_{\mathrm{i}}=0 \text { and } \Sigma \varepsilon_{\mathrm{i}} \delta \mathbf{N}_{\mathrm{i}}=0
\end{gathered}
$$

- \mathbf{N}_{0} particles are present in ε_{0} energy level with g_{0} energy states, \mathbf{N}_{1} in ε_{1} energy level with g_{1} energy states, N_{2} in ε_{2} energy level with g_{2} energy states, N_{i} in ε_{i} energy level with g_{i} energy states, with no restriction

Derivation of Bose - Einstein Distribution

- Suppose there are N_{i} particles are present in ε_{i} energy level
- The energy level ε_{i} is considered to be degenerate, in which there are g_{i} energy states
- $\left(g_{i}-1\right)$ partitions are required to place the N_{i} particles in g_{i} energy states
- No restriction on no. of particles occupying each energy state
- Permutations of N_{i} particles and $\left(g_{i}-1\right)$ partitions simultaneously is given by

$$
\left(N_{i}+g_{i}-1\right)!
$$

- Particles are identical and indistinguishable
- Permutations of N_{i} particles amongst themselves and $\left(g_{i}-1\right)$ partitions amongst themselves has to be included
- Actual no. in which N_{i} particles may be allocated in g_{i} states will be given by

$$
\frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}
$$

The Thermodynamic Probability will be given by:

$$
\mathrm{W}=\Pi \frac{\left(N_{i}+g i-1\right)!}{N_{i}!\left(g_{i}-1\right)!}
$$

$$
\begin{aligned}
& \text { - } \mathrm{W}=\frac{\left(N_{i}+g i-1\right)!}{N_{i}!\left(g_{i}-1\right)!}=\frac{(3+4-1)!}{3!(4-1)!}=\frac{6!}{3!(3)!}=\frac{6 \times 5 \times 4 \times / 3 \times / 2 \times 1}{7 \times / 2 \times 1 / \beta \times / 2 \times 1)}=20 \\
& \text { - } \mathrm{W}=\frac{\left(N_{i}+g i-1\right)!}{N_{i}!\left(g_{i}-1\right)!}=\frac{(1+4-1)!}{1!(4-1)!}=\frac{4!}{1!(3)!}=\frac{4 \times / 3 \times \not / 2 \times 1}{1(6 \times / 2 \times 1)}=4 \\
& \text { - } \mathrm{W}=\Pi \frac{\left(N_{i}+g i-1\right)!}{N_{i}!\left(g_{i}-1\right)!}=20 \times 4=80
\end{aligned}
$$

- The Thermodynamic Probability is given by:

$$
\begin{equation*}
\mathrm{W}=\Pi \frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!} \tag{1}
\end{equation*}
$$

- Taking logarithm, we get

$$
\begin{equation*}
\ln \mathrm{W}=\Sigma\left\{\ln \left(N_{i}+g_{i}-1\right)!-\left[\ln \left(N_{i}!\right)+\ln \left(g_{i}-1\right)!\right]\right\} \tag{2}
\end{equation*}
$$

- Neglecting Unity as compared to g_{i}

$$
\begin{equation*}
\ln \mathrm{W}=\Sigma\left\{\ln \left(N_{i}+g i\right)!-\left[\ln \left(N_{i}!\right)+\ln \left(g_{i}\right)!\right]\right\} \tag{3}
\end{equation*}
$$

- Applying STIRLING'S Approximation: $\ln \left(N_{i}!\right)=N_{i} \ln N_{i}-N_{i}$, we get

$$
\begin{align*}
\ln \mathrm{W}= & \Sigma\left\{\left[\left(N_{i}+g_{i}\right) \ln \left(g_{i}+N_{i}\right)-\left(N_{i}+g_{i}\right)\right]-\left[N_{i} \ln N_{i}-N_{i}+g_{i} \ln g_{i}-g_{i}\right]\right\} \\
= & \Sigma\left\{\left(N_{i}+g_{i}\right) \ln \left(g_{i}+N_{i}\right)-N_{i}-\not \boldsymbol{g}_{i}-N_{i} \ln N_{i}+\not \boldsymbol{X}_{i}-g_{i} \ln g_{i}+\not \boldsymbol{g}_{i}\right\} \\
= & \Sigma\left\{\mathbf{N}_{i} \ln \left(g_{i}+N_{i}\right)+g_{i} \ln \left(g_{i}+N_{i}\right)-N_{i} \ln N_{i}-g_{i} \ln g_{i}\right\}
\end{align*}
$$

- Distribution must satisfy the condition: $\mathrm{N} \& \mathrm{E}$ must remain constant,
- $\delta \mathbf{N} \& \delta E$ must be equal to zero

$$
\begin{align*}
& \delta \mathbf{N}=\Sigma \delta \mathbf{N}_{\mathrm{i}}=\mathbf{0} \tag{8}\\
& \delta \mathbf{E}=\Sigma \varepsilon_{i} \delta \mathbf{N}_{\mathrm{i}}=\mathbf{0} \tag{9}
\end{align*}
$$

- Using Lagrange's Method of Undetermined Multipliers
- multiplying eqn. 8 by (α) and eqn. 9 by (β)

$$
\begin{align*}
& \alpha \delta \mathbf{N}=\Sigma \alpha \delta \mathbf{N}_{\mathrm{i}}=\mathbf{0} \tag{10}\\
& \beta \delta \mathbf{E}=\Sigma \beta \varepsilon_{\mathrm{i}} \delta \mathbf{N}_{\mathrm{i}}=\mathbf{0} \tag{11}\\
& \Sigma \ln \left(1+\frac{g_{i}}{N_{i}}\right) \delta N_{i}=\mathbf{0}
\end{align*}
$$

- adding eqn. $10 \& 11$ and subtracting eqn. 7 , we get

$$
\begin{equation*}
\sum\left[\alpha+\beta \varepsilon_{\mathrm{i}}-\ln \left(1+\frac{g_{i}}{N_{i}}\right)\right] \delta \mathbf{N}_{\mathbf{i}}=0 \tag{12}
\end{equation*}
$$

- $\delta \mathbf{N}_{0}, \delta \mathbf{N}_{1}, \delta \mathbf{N}_{2}, \delta \mathbf{N}_{3}, \ldots \ldots . \delta \mathbf{N}_{\mathrm{i}}$ are independent of each other, so each term in summation must be zero $\delta N_{i} \neq 0$

$$
\begin{align*}
\alpha+\beta \varepsilon_{\mathrm{i}}-\ln \left(1+\frac{g_{i}}{N_{i}}\right) & =0 \tag{13}\\
\ln \left(1+\frac{g_{i}}{N_{i}}\right) & =\left(\alpha+\beta \varepsilon_{\mathrm{i}}\right) \tag{14}
\end{align*}
$$

- Removing logarithm from eqn. 14

Derivation of Bose - Einstein Statistics

$$
\begin{align*}
& \ln \left(1+\frac{g_{i}}{N_{i}}\right)=\left(\alpha+\beta \varepsilon_{\mathrm{i}}\right) \\
& \left(1+\frac{g_{i}}{N_{i}}\right)=\mathrm{e}^{(\alpha+\beta \varepsilon \mathrm{i})} \\
& \frac{g_{i}}{N_{i}}=\mathbf{e}^{(\alpha+\beta \varepsilon \mathbf{i})}-1 \quad \text { where } \beta=1 / \mathbf{k T} \quad[\mathbf{k}=\text { Boltzmann constant }] \\
& \frac{N_{i}}{g_{i}}=\frac{1}{\mathbf{e}^{(\alpha+\beta \varepsilon i)}-1} \tag{16}\\
& \mathbf{N}_{\mathbf{i}}=\frac{\mathrm{g}_{\mathrm{i}}}{\mathbf{e}^{(\alpha+\beta \varepsilon i)}-1} \tag{17}
\end{align*}
$$

This equation gives Bose - Einstein Distribution

- Application: Putting $\mathbf{e}^{\alpha}=1$ we can derive Planck's Radiation Law

FERMI - DIRAC STATISTICS - DERIVATION

- Suppose we have a bulk/ macroscopic system with the following conditions:
- Consist of \mathbf{N} indistinguishable particles with total energy E at temperature T
- Total number of particles and energy must remain conserved
- Restriction on Occupancy of energy states i.e., Not more than one particle
- Internal structure taken into consideration
- Particle have half integral spin e.g. Electron, proton,
- The wave function is antisymmetric
- Such particles are called Fermions

Bose -Einstein
Fermi - Dirac

\qquad
$\longrightarrow \longrightarrow-\infty$
-_-_-_-_-

- Consider 4 particles distributed in 2 energy levels in such a way that there are 3 particles in 1ε and 1 particle in 0ε
- Now if each energy levels have 4 energy states, and with restriction that only 1 particle occupy each energy state, then no. of microstates will be:

- Fermi-Dirac Statistics: W=4 x $4=16$
(Pauli's Exclusion Principle)
- Bose - Einstein Statistics: W=20×4=80 (No restriction)

Derivation of Fermi - Dirac Distribution

- Most Probable Distribution ???
- The one with maximum no. of microstates - gives Maximum Thermodynamic Probability ($\mathbf{W}_{\max }$)
- $\delta \mathbf{W}(\mathbf{N})=0$ or $\delta \ln \mathbf{W}(N)=0$
- Consider the distribution of \mathbf{N} identical and indistinguishable particles among various energy levels $-\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \ldots \ldots$. having $g_{0}, g_{1}, g_{2}, \ldots . . .$. energy states with Total energy E at temperature T , with not more than one particle in each energy state (Pauli's Exclusion Principle)
- Total number of particles \mathbf{N} and Total energy \mathbf{E} remains constant

$$
\begin{gathered}
\Sigma \mathbf{N}_{\mathrm{i}}=\mathrm{N} \text { and } \Sigma \mathrm{N}_{\mathrm{i}} \varepsilon_{\mathrm{i}}=\mathrm{E} \\
\Sigma \delta \mathbf{N}_{\mathrm{i}}=0 \text { and } \Sigma \varepsilon_{\mathrm{i}} \delta \mathbf{N}_{\mathrm{i}}=0
\end{gathered}
$$

- \mathbf{N}_{0} particles are present in ε_{0} energy level with g_{0} energy states, \mathbf{N}_{1} in ε_{1} energy level with g_{1} energy states, \mathbf{N}_{2} in ε_{2} energy level with g_{2} energy states, \mathbf{N}_{i} in ε_{i} energy level with g_{i} energy states with only one particle per energy state

Derivation of Fermi - Dirac Statistics

- Suppose there are N_{i} particles present in ε_{i} energy level
- The energy level ε_{i} is considered to be degenerate, in which there are g_{i} energy states where $g_{i} \ggg N_{i}$
- N_{i} particles has to be arranged in ε_{i} energy level with g_{i} energy states
- Restriction on no. of particles i.e., only 1 particle occupy per energy state
- Permutations for g_{i} energy state will be g_{i} !
- Particles are identical and indistinguishable
- Permutations of N_{i} particles amongst themselves and $\left(g_{i}-N_{\mathrm{i}}\right)$ vacant energy state amongst themselves has to be included
- Actual no. in which N_{i} particles may be allocated in ε_{i} energy level will be given by

$$
\frac{\mathbf{g}_{i}!}{N_{i}!\left(\mathbf{g}_{\mathbf{i}}-N_{i}\right)!}
$$

The Thermodynamic Probability will be given by:

$$
w=\Pi \frac{\mathrm{g}_{\mathrm{i}}!}{\mathrm{N}_{i}!\left(\mathrm{g}_{\mathrm{i}}-N_{\mathrm{i}}\right)!}
$$

- $\mathbf{W}=\frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}=\frac{4!}{3!(4-3)!}=\frac{4!}{3!(1)!}=\frac{4 \times \not 2 \times 2 \times \not \subset \not}{\not 2 \times \mathcal{Z} \times \mathcal{1}(1)}=4$
- $\mathbf{W}=\frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}=\frac{4!}{1!(4-1)!}=\frac{4!}{1!(3)!}=\frac{4 \times \not 2 \times 2 \times \not \subset \not}{1(\mathcal{Z} \times 2 \times \neq 1)}=4$
- $\mathbf{W}=\Pi \frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}=4 \times 4=16$
- The Thermodynamic Probability will be given by :

$$
\begin{equation*}
\mathbf{W}=\Pi \frac{g_{i}!}{N_{i}!\left(g_{i}-N_{\mathrm{i}}\right)!} \tag{1}
\end{equation*}
$$

- Taking logarithm, we get

$$
\begin{equation*}
\ln \mathrm{W}=\Sigma\left\{\ln g_{i}!-\left[\ln \left(N_{i}!\right)+\ln \left(g_{i}-N_{i}\right)!\right]\right\} \tag{2}
\end{equation*}
$$

- Applying STIRLING'S Approximation: $\boldsymbol{\operatorname { l n }}\left(\boldsymbol{N}_{i}!\right)=\boldsymbol{N}_{\boldsymbol{i}} \ln \boldsymbol{N}_{\boldsymbol{i}}-\boldsymbol{N}_{\boldsymbol{i}}$, we get

$$
\begin{align*}
\ln \mathrm{W}= & \Sigma\left\{\left[g_{i} \ln g_{i}-g_{i}\right]-\left[N_{i} \ln N_{i}-N_{i}+\left(g_{i}-N_{i}\right) \ln \left(g_{i}-N_{i}\right)-\left(g_{i}-N_{i}\right)\right]\right\} \\
= & \Sigma\left\{g_{i} \ln g_{i}-\not g_{i}-N_{i} \ln N_{i}+\not X_{i}-\left(g_{i}-N_{i}\right) \ln \left(g_{i}-N_{i}\right)+\not \mathscr{D}_{i}-\not \mathcal{X}_{i}\right\} \\
= & \Sigma\left\{g_{i} \ln g_{i}-N_{i} \ln N_{i}-g_{i} \ln \left(g_{i}-N_{i}\right)+N_{i} \ln \left(g_{i}-N_{i}\right)\right\} \\
& \quad \ln \mathbf{W}=\Sigma\left\{g_{i} \ln \left(\frac{g_{i}}{g_{i}-N_{i}}\right)+N_{i} \ln \left(\frac{g_{i}-N_{i}}{N_{i}}\right)\right\} \\
& \quad \ln \mathbf{W}=\Sigma\left\{N_{i} \ln \left(\frac{g_{i}}{N_{i}}-1\right)-g_{i} \ln \left(\frac{g_{i}-N_{i}}{g_{i}}\right)\right\} \\
& \ln \mathbf{W}=\Sigma\left\{N_{i} \ln \left(\frac{g_{i}}{N_{i}}-1\right)-g_{i} \ln \left(1-\frac{N_{i}}{g_{i}}\right)\right\} \tag{3}
\end{align*}
$$

$$
\ln \mathrm{W}=\Sigma\left\{N_{i} \ln \left(\frac{g_{i}}{N_{i}}-1\right)-g_{i} \ln \left(1-\frac{N_{i}}{g_{i}}\right)\right\} \ldots \ldots \ldots \ldots . . \text { (3) } \quad\left[\text { where } \delta \ln x_{i}=\frac{1}{x_{i}} \delta x_{i}\right]
$$

- On differentiating, we get

$$
\begin{align*}
\delta \ln \mathbf{W} & =\Sigma\left\{\ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}+N_{i} \delta \ln \left(\frac{g_{i}}{N_{i}}-1\right)-\ln \left(1-\frac{N_{i}}{g_{i}}\right) \delta g_{i}-g_{i} \delta \ln \left(1-\frac{N_{i}}{g_{i}}\right)\right\} \\
& \left.=\Sigma\left\{\ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}+N_{i} \frac{N_{i}}{g_{i}-N_{i}} \delta\left(\frac{g_{i}-N i}{N_{i}}\right)-g_{i} \frac{g_{i}}{g_{i}-N_{i}} \delta\left(\frac{g_{i}-N i}{g_{i}}\right)\right\} \quad \quad \quad \text { where } \delta g_{i}=0\right] \\
& =\Sigma\left\{\ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}+\not X_{i} \frac{D_{i}}{g_{i}-N_{i}}\left(-\frac{g_{i}}{\Delta_{i}^{2}}\right) \delta N_{i}-g_{i} \frac{g_{i}^{\prime}}{g_{i}-N_{i}}\left(-\frac{g_{i}}{g_{i}^{2}}\right) \delta N_{i}\right\} \\
& =\Sigma\left\{\ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}-\frac{g_{i}}{g_{i} N_{i}} \delta N_{i}+\frac{g_{i}}{g_{i}-N_{i}} \delta N_{i}\right\} \\
& =\Sigma \ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i} \tag{4}
\end{align*}
$$

- Most Probable Distribution of particles
- The one for which W is maximum $\left(\mathrm{W}_{\max }\right)$
- Condition for maxima: $\delta W=\delta \ln W=0$
- Putting the condition of eqn. 5

$$
\begin{equation*}
\delta \ln W=\Sigma \ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}=0 \tag{6}
\end{equation*}
$$

- Distribution must satisfy the condition: N \& E must remain constant,
- $\delta \mathbf{N} \& \delta E$ must be equal to zero

$$
\begin{align*}
& \delta \mathbf{N}=\Sigma \delta \mathbf{N}_{\mathbf{i}}=\mathbf{0} \tag{7}\\
& \delta \mathbf{E}=\Sigma \varepsilon_{\mathbf{i}} \delta \mathbf{N}_{\mathbf{i}}=\mathbf{0} \tag{8}
\end{align*}
$$

- Using Lagrange's Method of Undetermined Multipliers
- multiplying eqn. 7 by (α) and eqn. 8 by (β)

$$
\begin{array}{r}
\alpha \delta \mathbf{N}=\Sigma \alpha \delta \mathbf{N}_{\mathbf{i}}=0 \\
\beta \delta \mathbf{E}=\Sigma \beta \varepsilon_{i} \delta \mathbf{N}_{\mathbf{i}}=0 \\
\sum \ln \left(\frac{g_{i}}{N_{i}}-1\right) \delta N_{i}=0 \tag{6}
\end{array}
$$

- adding eqn. $9 \& 10$ and subtracting eqn. 6 , we get

$$
\begin{equation*}
\Sigma\left[\alpha+\beta \varepsilon_{\mathrm{i}}-\ln \left(\frac{g_{i}}{N_{i}}-\mathbf{1}\right)\right] \delta \mathbf{N}_{\mathrm{i}}=\mathbf{0} \tag{11}
\end{equation*}
$$

- $\delta \mathbf{N}_{0}, \delta \mathbf{N}_{1}, \delta \mathbf{N}_{2}, \delta \mathbf{N}_{3}, \ldots \ldots . \delta \mathbf{N}_{\mathrm{i}}$ are independent of each other, so each term in summation must be zero $\delta N_{i} \neq 0$

$$
\begin{align*}
& \alpha+\beta \varepsilon_{\mathrm{i}}-\ln \left(\frac{g_{i}}{N_{i}}-1\right)=0 \tag{12}\\
& \quad \ln \left(\frac{g_{i}}{N_{i}}-1\right)=\left(\alpha+\beta \varepsilon_{\mathrm{i}}\right) \tag{13}
\end{align*}
$$

- Removing logarithm from eqn. 13

Derivation of Fermi - Dirac Statistics

$$
\begin{align*}
& \ln \left(\frac{g_{i}}{N_{i}}-1\right)=\left(\alpha+\beta \varepsilon_{i}\right) \\
& \left(\frac{g_{i}}{N_{i}}-1\right)=\mathbf{e}^{(\alpha+\beta \varepsilon \mathbf{i})} \\
& \frac{g_{i}}{N_{i}}=\mathbf{e}^{(\alpha+\beta \varepsilon \mathbf{i})}+1 \quad \text { where } \beta=1 / \mathbf{k} \mathbf{T} \quad[\mathbf{k}=\text { Boltzmann constant }] \\
& \frac{N_{i}}{g_{i}}=\frac{1}{\mathbf{e}^{(\alpha+\beta \varepsilon i)}+1} \tag{15}\\
& \mathbf{N}_{\mathbf{i}}=\frac{\mathbf{g}_{\mathrm{i}}}{\mathbf{e}^{(\alpha+\beta \varepsilon i)}+1}
\end{align*}
$$

This equation gives Fermi - Dirac Distribution

- Application: Derive expression for heat capacity C_{v} of metals at low temperature

COMPARISON BETWEEN THE THREE STATISTICS

Maxwell - Boltzmann	Bose - Einstein	Fermi - Dirac
- Classical Statistics - Internal Structure ignored - Identical \& distinguishable particles - No restriction on occupancy of energy states - Phase space not known - Spin can have any value -Wavefunction not involved -At absolute zero, energy taken as zero -Boltzmannons or Maxwellons -Eg. Ideal gas molecules	- Quantum Statistics - Internal Structure taken into account -Identical \& indistinguishable particles - No restriction on occupancy of energy states -Phase space is known $\sim h^{3}$ -Zero or Integral Spin - Wavefunction Symmetric -At absolute zero, energy is taken to be zero - Bosons -Eg. Photons, mesons, ${ }^{4} \mathrm{He},{ }^{2} \mathrm{H}, . . .$. - At high temperature approaches Maxwell-Boltzmann distribution	- Quantum Statistics -Internal Structure taken into account -Identical \& indistinguishable particles - Not more than one particle in each state -Pauli's Exclusion Principle - Phase space is known $\sim h^{3}$ - Half Integral Spin - Wavefunction Antisymmetric - At absolute zero, energy is not zero. - Fermions -Eg. Electron, proton,..... -At high temperature approaches Maxwell-Boltzmann distribution

COMPARISON BETWEEN THE THREE STATISTICS

