STATISTICAL THERMODYNAMICS Part - B Lecture – 3: Quantum Statistics (M.Sc. Sem –II/ Chemistry, Paper -III, Unit – II)

DR. SUNITHA B. MATHEW Govt. V. Y. T. PG Autonomous College

Durg

88

88

Statistical Thermodynamics

- Recapitulation: Maxwell Boltzmann Distribution Law
- Limitations of Maxwell Boltzmann Statistics
- Bose Einstein Statistics
- Fermi Dirac Statistics
- Comparison of the three Statistics

PARTICLE STATISTICS

MAXWELL – BOLTZMANN DISTRIBUTION : Classical Statistics

- Bulk/ macroscopic system with the following conditions:
 - Consist of N distinguishable particles with total energy E at temperature T
 - No interaction between particles
 - No restriction on Occupancy of energy levels
 - Total number of particles ${\color{black}N}$ and energy ${\color{black}E}$ must remain constant

 $\Sigma N_i = N \text{ and } \Sigma N_i \epsilon_i = E ;$ $\Sigma \delta N_i = 0 \text{ and } \Sigma \epsilon_i \delta N_i = 0$

- Such particles are called **Boltzmannons** or **Maxwellons** e.g. System composed of gas
- No. of ways of achieving :

$$W = \frac{N!}{N_0! N_1! N_2! \dots}$$

• Maxwell- Boltzmann Distribution Law:

$$N_i = g_i e^{-\alpha} e^{-\epsilon_i/kT}$$

Limitations of Maxwell – Boltzmann Distribution law

- Maxwell- Boltzmann statistics is based on Classical Mechanics: Classical Statistics, so is valid only within classical limit
- Not valid at very low temperature and very high particle density, where quantum effects become significant
- Satisfactorily explains pressure, temperature, etc. of gaseous systems
- But can we distinguish between gas molecules? In the light of Quantum theory, this leads to that this law is only an approximation & is valid for gases at comparatively low density
- Couldn't explain some experimental results like black body radiation distribution, specific heat at low temperature, etc.
- In case of photon gas, according to M-B distribution there is continuous no. of photons per unit range of frequency as it increases which is contradicted by Planck's law
- The molar heat capacity of a metal is 3R but according to M-B Statistics free electron contributes 3R/2

BOSE - EINSTEIN STATISTICS : DERIVATION

- Suppose we have a bulk/ macroscopic system with the following conditions:
 - Consist of N indistinguishable particles with total energy E at temperature T
 - Total number of particles and energy must remain conserved
 - No restriction on Occupancy of energy states
 - Internal structure taken into consideration
 - Particle have zero or integral spin eg. Photon, mesons, ⁴He, ²H,
 - The wave function is symmetric
 - Such particles are called **Bosons**

- Consider four particles distributed in two energy levels in such a way that there are
- 3 particles in 1ϵ and 1 particle in 0ϵ then no. of microstates according to

Maxwell- Boltzmann Statistics

Bose – Einstein Statistics

• Now if each energy levels have $g_i = 4$ energy states, then no. of microstates will be

Derivation of Bose – Einstein Distribution

- Most Probable Distribution ???
 - The one with maximum no. of microstates or gives Maximum Thermodynamic Probability
 - W_{max} : $\delta W(N) = 0$ or $\delta \ln W(N) = 0$
- Consider the distribution of N identical and indistinguishable particles among various energy levels ε₀, ε₁, ε₂...... having g₀, g₁, g₂, energy states with Total energy E at temperature T
- Total number of particles ${\bf N}$ and Total energy ${\bf E}$ remains ${\color{black} {\rm constant}}$

 $\Sigma N_i = N$ and $\Sigma N_i \varepsilon_i = E$

 $\Sigma \, \delta N_i = 0$ and $\Sigma \, \epsilon_i \, \delta N_i = 0$

 N_0 particles are present in ϵ_0 energy level with g_0 energy states, N_1 in ϵ_1 energy level with g_1 energy states, N_2 in ϵ_2 energy level with g_2 energy states, N_i in ϵ_i energy level with g_i energy states, with no restriction

Derivation of Bose – Einstein Distribution

- Suppose there are N_i particles are present in ε_i energy level
- The energy level ε_i is considered to be degenerate, in which there are g_i energy states
- (g_i 1) partitions are required to place the N_i particles in g_i energy states
- No restriction on no. of particles occupying each energy state
- Permutations of N_i particles and $(g_i 1)$ partitions simultaneously is given by $(N_i + g_i 1)!$
- Particles are identical and indistinguishable
- Permutations of N_i particles amongst themselves and (g_i-1) partitions amongst themselves has to be included
- Actual no. in which N_i particles may be allocated in g_i states will be given by

 $\frac{(N_{i}+g_{i}-1)!}{N_{i}!(g_{i}-1)!}$

Example

The Thermodynamic Probability will be given by:

W =
$$\prod \frac{(N_i + gi - 1)!}{N_i!(g_i - 1)!}$$

• W =
$$\frac{(N_i + gi - 1)!}{N_i!(g_i - 1)!} = \frac{(3 + 4 - 1)!}{3!(4 - 1)!} = \frac{6!}{3!(3)!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = 20$$

• W =
$$\frac{(N_i + gi - 1)!}{N_i!(g_i - 1)!} = \frac{(1 + 4 - 1)!}{1!(4 - 1)!} = \frac{4!}{1!(3)!} = \frac{4 \times 3 \times 2 \times 1}{1(3 \times 2 \times 1)} = 4$$

• W =
$$\prod \frac{(N_i + gi - 1)!}{N_i!(g_i - 1)!}$$
 = 20 x 4 = 80

Derivation of Bose – Einstein Statistics

$$ln \mathbf{W} = \Sigma \{ N_i ln \left(1 + \frac{g_i}{N_i} \right) + g_i ln \left(1 + \frac{N_i}{g_i} \right) \} \dots \dots (4) \quad [\text{where } \delta ln x_i = \frac{1}{x_i} \delta x_i]$$

- On differentiating, we get $\delta \ln W = \Sigma \{ ln \left(1 + \frac{g_i}{N_i} \right) \delta N_i + N_i \delta ln \left(1 + \frac{g_i}{N_i} \right) + ln \left(1 + \frac{N_i}{g_i} \right) \delta g_i + g_i \delta ln \left(1 + \frac{N_i}{g_i} \right) \}$ $= \Sigma \{ ln \left(1 + \frac{g_i}{N_i} \right) \delta N_i + N_i \frac{N_i}{g_i + N_i} \delta \left(\frac{g_i + N_i}{N_i} \right) + ln \left(1 + \frac{N_i}{g_i} \right) \delta g_i + g_i \frac{g_i}{g_i + N_i} \delta \left(\frac{g_i + N_i}{g_i} \right) \}$ $= \Sigma \{ ln \left(1 + \frac{g_i}{N_i} \right) \delta N_i + N_i \frac{N_i}{g_i + N_i} \left(- \frac{g_i}{N_i^2} \right) \delta N_i + g_i \frac{1}{g_i'} \frac{g_i}{g_i + N_i} \delta N_i \} [where \delta g_i = 0]$
 - $= \Sigma \{ ln \left(1 + \frac{g_i}{N_i} \right) \delta N_i$

.....(5)

......(6)

Most Probable Distribution of particles

- The one for which W is maximum (W_{max})
- Condition for maxima: $\delta W = \delta \ln W = 0$

Putting the condition of eqn. 6

$$\delta \ln W = \Sigma \{ ln \left(1 + \frac{g_i}{N_i} \right) \delta N_i = 0 \qquad \dots \qquad (7)$$

- Distribution must satisfy the condition: N & E must remain constant,
 - $\delta N \& \delta E$ must be equal to zero

$$\delta \mathbf{N} = \Sigma \, \delta \mathbf{N}_{\mathbf{i}} = \mathbf{0} \qquad (8)$$

$$\delta \mathbf{E} = \Sigma \, \varepsilon_{\mathbf{i}} \, \delta \mathbf{N}_{\mathbf{i}} = \mathbf{0} \qquad (9)$$

- **Using Lagrange's Method of Undetermined Multipliers**
 - multiplying eqn. 8 by (α) and eqn. 9 by (β) $\alpha \, \delta N = \Sigma \, \alpha \delta N_i = 0$ (10)

$$\delta \delta \mathbf{E} = \Sigma \beta \varepsilon_i \delta \mathbf{N}_i = \mathbf{0} \qquad (11)$$

$$\Sigma ln \left(1 + \frac{g_i}{N_i}\right) \delta N_i = \mathbf{0} \qquad (7)$$

• adding eqn.10 & 11 and subtracting eqn. 7, we get

 $\delta N_0, \delta N_1, \delta N_2, \delta N_3, \dots, \delta N_i$ are independent of each other, so each term in summation must be zero $\delta N_i \neq 0$

Einstein Statistics Bose **Derivation of** Removing logarithm from eqn. 14

 $ln\left(1+\frac{g_i}{N_i}\right) = (\alpha + \beta \varepsilon_i)$ $\left(1+\frac{g_i}{N}\right) = e^{(\alpha+\beta\varepsilon_i)}$ $\frac{g_i}{N_i} = \mathbf{e}^{(\alpha + \beta \varepsilon \mathbf{i})} - 1$ where $\beta = 1/kT$ [k = Boltzmann constant] $\frac{N_i}{g_i} = \frac{1}{e^{(\alpha + \beta \varepsilon i)} - 1}$ $N_i = \frac{g_i}{e^{(\alpha + \beta \epsilon i)} - 1}$(17)

This equation gives Bose – Einstein Distribution

• Application: Putting $e^{\alpha} = 1$ we can derive Planck's Radiation Law

Einstein Statistics Derivation of Bose

FERMI - DIRAC STATISTICS - DERIVATION

- Suppose we have a bulk/ macroscopic system with the following conditions:
 - Consist of N indistinguishable particles with total energy E at temperature T
 - Total number of particles and energy must remain conserved
 - Restriction on Occupancy of energy states i.e., Not more than one particle
 - Internal structure taken into consideration
 - Particle have half integral spin e.g. Electron, proton,
 - The wave function is antisymmetric
 - Such particles are called Fermions

	Bose -	Bose -Einstein	
			-

- Consider 4 particles distributed in 2 energy levels in such a way that there are 3 particles in 1ε and 1 particle in 0ε
- Now if each energy levels have 4 energy states, and with restriction that only 1
 particle occupy each energy state, then no. of microstates will be:

Derivation of Fermi – Dirac Distribution

- Most Probable Distribution ???
 - The one with maximum no. of microstates gives Maximum Thermodynamic Probability (W_{max})
 - $\delta W(N) = 0$ or $\delta \ln W(N) = 0$
- Consider the distribution of N identical and indistinguishable particles among various energy levels ε₀, ε₁, ε₂ having g₀, g₁, g₂, energy states with Total energy E at temperature T, with not more than one particle in each energy state (Pauli's Exclusion Principle)
- Total number of particles ${\bf N}$ and Total energy ${\bf E}$ remains ${\color{black} {\rm constant}}$

 $\Sigma N_i = N$ and $\Sigma N_i \varepsilon_i = E$

 $\Sigma \, \delta N_i = 0$ and $\Sigma \, \epsilon_i \, \delta N_i = 0$

 N_0 particles are present in ε_0 energy level with g_0 energy states, N_1 in ε_1 energy level with g_1 energy states, N_2 in ε_2 energy level with g_2 energy states, N_i in ε_i energy level with g_i energy states with only one particle per energy state

Derivation of Fermi – Dirac Statistics

- Suppose there are N_i particles present in ϵ_i energy level
- The energy level ϵ_i is considered to be degenerate, in which there are g_i energy states where $g_i >>> N_i$
- N_i particles has to be arranged in ϵ_i energy level with g_i energy states
- **Restriction** on no. of particles i.e., only 1 particle occupy per energy state
- Permutations for g_i energy state will be g_i!
- Particles are identical and indistinguishable
- Permutations of N_i particles amongst themselves and (g_i N_i) vacant energy state amongst themselves has to be included
- Actual no. in which \underline{N}_i particles may be allocated in $\underline{\epsilon}_i$ energy level will be given by

 $\frac{\mathbf{g_i}!}{\mathbf{N_i}! (\mathbf{g_i} - \mathbf{N_i})!}$

The **Thermodynamic Probability** will be given by:

Example

 $W = \Pi \frac{g_i!}{N_i! (g_i - N_i)!}$

• W =
$$\frac{g_i!}{N_i! (g_i - N_i)!} = \frac{4!}{3!(4-3)!} = \frac{4!}{3!(1)!} = \frac{4 \times 3 \times 2 \times 4}{3 \times 2 \times 4(1)} = 4$$

• W = $\frac{g_i!}{N_i! (g_i - N_i)!} = \frac{4!}{1!(4-1)!} = \frac{4!}{1!(3)!} = \frac{4 \times 3 \times 2 \times 4}{1(3 \times 2 \times 4)} = 4$
• W = $\prod \frac{g_i!}{N_i! (g_i - N_i)!} = 4 \times 4 = 16$

• The Thermodynamic Probability will be given by :

$$\mathbf{W} = \prod \frac{\boldsymbol{g}_i!}{\mathbf{N}_i! (\boldsymbol{g}_i - \mathbf{N}_i)!}$$

..... (1)

- Taking logarithm, we get $ln M = \sum ln q l = ln (M)$
 - $ln \mathbf{W} = \Sigma \{ \ln \boldsymbol{g_i}! [ln(\boldsymbol{N_i}!) + ln (\boldsymbol{g_i} \boldsymbol{N_i})!] \}$
- Applying **STIRLING'S Approximation**: $ln(N_i!) = N_i lnN_i N_i$, we get $ln \mathbf{W} = \sum \{ [\mathbf{g}_i ln \mathbf{g}_i - \mathbf{g}_i] - [\mathbf{N}_i ln \mathbf{N}_i - \mathbf{N}_i + (\mathbf{g}_i - \mathbf{N}_i) ln (\mathbf{g}_i - \mathbf{N}_i) - (\mathbf{g}_i - \mathbf{N}_i)] \}$ $= \Sigma \{ \boldsymbol{g}_i \ln \boldsymbol{g}_i - \boldsymbol{j}_i - \boldsymbol{N}_i \ln \boldsymbol{N}_i + \boldsymbol{N}_i - (\boldsymbol{g}_i - \boldsymbol{N}_i) \ln (\boldsymbol{g}_i - \boldsymbol{N}_i) + \boldsymbol{g}_i - \boldsymbol{N}_i \}$ $= \sum \{ \boldsymbol{g}_i ln \boldsymbol{g}_i - \boldsymbol{N}_i ln \boldsymbol{N}_i - \boldsymbol{g}_i ln (\boldsymbol{g}_i - \boldsymbol{N}_i) + \boldsymbol{N}_i ln (\boldsymbol{g}_i - \boldsymbol{N}_i) \}$ $ln \mathbf{W} = \Sigma \{ \boldsymbol{g}_{i} ln \left(\frac{\boldsymbol{g}_{i}}{\boldsymbol{g}_{i} - \boldsymbol{N}_{i}} \right) + \boldsymbol{N}_{i} ln \left(\frac{\boldsymbol{g}_{i} - \boldsymbol{N}_{i}}{\boldsymbol{N}_{i}} \right) \}$ $ln \mathbf{W} = \Sigma \{ \mathbf{N}_{i} ln \left(\frac{\mathbf{g}_{i}}{\mathbf{N}_{i}} - \mathbf{1} \right) - \mathbf{g}_{i} ln \left(\frac{\mathbf{g}_{i} - \mathbf{N}_{i}}{\mathbf{g}_{i}} \right) \}$ $ln \mathbf{W} = \Sigma \{ N_i ln \left(\frac{g_i}{N_i} - 1 \right) - g_i ln \left(1 - \frac{N_i}{g_i} \right) \}$(3)

$$ln \mathbf{W} = \sum \{ N_i ln \left(\frac{g_i}{N_i} - 1 \right) - g_i ln \left(1 - \frac{N_i}{g_i} \right) \}$$
(3) [where $\delta ln x_i = \frac{1}{x_i} \delta x_i$]

- On differentiating, we get
- $\delta \ln W = \Sigma \{ ln \left(\frac{g_i}{N_i} 1 \right) \delta N_i + N_i \delta ln \left(\frac{g_i}{N_i} 1 \right) ln \left(1 \frac{N_i}{g_i} \right) \delta g_i g_i \delta ln \left(1 \frac{N_i}{g_i} \right) \}$ $= \Sigma \{ ln \left(\frac{g_i}{N_i} - 1 \right) \delta N_i + N_i \frac{N_i}{g_i - N_i} \delta \left(\frac{g_i - N_i}{N_i} \right) - g_i \frac{g_i}{g_i - N_i} \delta \left(\frac{g_i - N_i}{g_i} \right) \}$ [where **δ***g*_i = **0**] $= \Sigma \{ ln \left(\frac{g_i}{N_i} - 1 \right) \delta N_i + \varkappa_i \frac{N_i}{g_i - N_i} \left(-\frac{g_i}{N_i^2} \right) \delta N_i - g_i \frac{g_i}{g_i - N_i} \left(-\frac{g_i}{g_i^2} \right) \delta N_i \}$ $= \Sigma \{ ln \left(\frac{g_i}{N_i} - 1 \right) \delta N_i - \frac{g_i}{a - N_i} \delta N_i + \frac{g_i}{a - N_i} \delta N_i \}$ $= \sum ln \left(\frac{g_i}{N} - 1\right) \delta N_i$ • Most Probable Distribution of particles • The one for which W is maximum (W_{max})

......(5)

- Condition for maxima: $\delta W = \delta \ln W = 0$
- Putting the condition of eqn. 5

- Distribution must satisfy the condition: N & E must remain constant,
 - $\delta N \& \delta E$ must be equal to zero •

$$\delta \mathbf{N} = \Sigma \, \delta \mathbf{N}_{\mathbf{i}} = \mathbf{0} \qquad (7)$$

$$\delta \mathbf{E} = \Sigma \, \varepsilon_{\mathbf{i}} \, \delta \mathbf{N}_{\mathbf{i}} = \mathbf{0} \qquad (8)$$

- **Using Lagrange's Method of Undetermined Multipliers**
 - multiplying eqn. 7 by (α) and eqn. 8 by (β) •

 $\beta \, \delta E = \Sigma \, \beta \, \varepsilon_i \, \delta N_i = 0$ (10)

adding eqn. 9 & 10 and subtracting eqn. 6, we get

 δN_0 , δN_1 , δN_2 , δN_3 , ..., δN_i are independent of each other, so each term in summation must be zero $\delta N_i \neq 0$

 $\sum ln\left(\frac{g_i}{N}-1\right)\delta N_i = 0$

$$\alpha + \beta \varepsilon_{i} - ln \left(\frac{g_{i}}{N_{i}} - 1\right) = 0 \qquad (12)$$

$$ln \left(\frac{g_{i}}{N_{i}} - 1\right) = (\alpha + \beta \varepsilon_{i}) \qquad (13)$$

This equation gives Fermi – Dirac Distribution

• Application: Derive expression for heat capacity C_v of metals at low temperature

COMPARISON BETWEEN THE THREE STATISTICS

Maxwell - Boltzmann	Bose - Einstein	Fermi - Dirac
 Classical Statistics Internal Structure ignored Identical & distinguishable particles No restriction on occupancy of energy states Phase space not known Spin can have any value Wavefunction not involved At absolute zero, energy taken as zero Boltzmannons or Maxwellons Eg. Ideal gas molecules 	 Quantum Statistics Internal Structure taken into account Identical & indistinguishable particles No restriction on occupancy of energy states Phase space is known ~ h³ Zero or Integral Spin Wavefunction Symmetric At absolute zero, energy is taken to be zero Bosons Eg. Photons, mesons, ⁴He, ²H, At high temperature approaches Maxwell-Boltzmann distribution 	 Quantum Statistics Internal Structure taken into account Identical & indistinguishable particles Not more than one particle in each state –Pauli's Exclusion Principle Phase space is known ~ h³ Half Integral Spin Wavefunction Antisymmetric At absolute zero, energy is not zero. Fermions E. Electron, proton, At high temperature approaches Maxwell-Boltzmann distribution

COMPARISON BETWEEN THE THREE STATISTICS

Maxwell - Boltzmann	Bose - Einstein	Fermi - Dirac
•No. of ways of achieving: $W = N! \prod \frac{g_i^{N_i}}{N_i!}$ •Max. Probability distribution $\infty \qquad \frac{1}{e^{(\alpha + \beta \epsilon i)}}$ •Distribution $N_i = \frac{g_i}{e^{(\alpha + \beta \epsilon i)}}$	•No. of ways of achieving: $W = \prod \frac{(N_i + gi - 1)!}{N_i!(g_i - 1)!}$ •Max. Probability distribution $\infty \frac{1}{e^{(\alpha + \beta \epsilon i)} - 1}$ •Distribution $N_i = \frac{g_i}{e^{(\alpha + \beta \epsilon i)} - 1}$	•No. of ways of achieving: $W = \prod \frac{g_i!}{N_i! (g_i - N_i)!}$ •Max. Probability distribution $\infty \frac{1}{e^{(\alpha + \beta \epsilon i)} + 1}$ •Distribution $N_i = \frac{g_i}{e^{(\alpha + \beta \epsilon i)} + 1}$
$ \begin{array}{c} $		$ \begin{array}{c} \overline{i} \\ \overline{i} \\ $

