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Bulk / Macroscopic System

Nature of microscopic constituents 
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PARTICLE   STATISTICS

CLASSICAL

STATISTICS

Internal  structure ignored

Particles  distinguishable

MAXWELL –
BOLTZMANN   

STATISTICS

No restriction 
on occupancy

QUANTUM 

STATISTICS

Internal  structure  
considered

FERMI –DIRAC 

STATISTICS

Restriction 
on 

occupancy

Particles 

indistinguishable

BOSE –
EINSTEIN 

STATISTICS

Integral  Spin Half Integral Spin



• Bulk/ macroscopic system with the following conditions:

• Consist of N distinguishable particles with total energy E at temperature T

• No interaction between particles

• No restriction on Occupancy of energy levels

• Total number of particles N and energy E must remain constant

Ni = N  and   Nii =  E ;         Ni = 0  and  i Ni   =  0

• Such particles are called Boltzmannons or Maxwellons e.g.  System composed 
of gas

• No. of ways of achieving :

• Maxwell- Boltzmann Distribution Law:

MAXWELL – BOLTZMANN  DISTRIBUTION : Classical Statistics

!.....!!

!
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- e-i/kT



• Maxwell- Boltzmann statistics is based on Classical Mechanics: Classical Statistics, 
so is valid only within classical limit

• Not valid at very low temperature and very high particle density, where quantum 
effects become significant

• Satisfactorily explains pressure, temperature, etc. of gaseous systems

• But can we distinguish between gas molecules? In the light of Quantum theory, 
this leads to that this law is only an approximation & is valid for gases at 
comparatively low density

• Couldn’t explain some experimental results like black body radiation distribution, 
specific heat at low temperature, etc.

• In case of photon gas, according to M-B distribution there is continuous no. of 
photons per unit range of frequency as it increases which is contradicted by 
Planck’s law

• The molar heat capacity of a metal is 3R but according to M-B Statistics free 
electron contributes 3R/2

Limitations of Maxwell – Boltzmann Distribution law



• Suppose we have a bulk/ macroscopic system with the following conditions:

• Consist of N indistinguishable particles with total energy E at temperature T

• Total number of particles and energy  must  remain conserved

• No restriction on Occupancy of energy states 

• Internal structure taken into consideration

• Particle have zero or integral spin eg. Photon, mesons, 4He, 2H, ……… 

• The wave function is symmetric

• Such particles are called Bosons

----------- ------------ -----------

----------- ------------ ------------

----------- ----------- ------------

----------- ----------- ------------

BOSE - EINSTEIN STATISTICS : DERIVATION 



W = 4 W = 1

0

W =  20 W = 4W = 20 x 4 = 80

• Consider four particles distributed in two energy levels in such a way that there are 

• 3 particles in 1 and 1 particle in 0 then no. of microstates according to 

Maxwell- Boltzmann Statistics Bose –Einstein Statistics

1 1 1 1 1

0 0 0 0 0

• Now if each energy levels have 𝒈𝒊 = 4 energy states, then no. of microstates will be

1

Partitions (𝒈𝒊 -1)



Derivation of Bose – Einstein Distribution

• Most Probable Distribution  ???
• The one with maximum no. of microstates  or   gives Maximum Thermodynamic 

Probability 
• Wmax :  W (N)  = 0   or  ln W (N) = 0

• Consider  the distribution of N identical and indistinguishable particles among 
various energy levels - 0, 1, 2 ……………… having g0, g1, g2, …….. energy states 
with Total energy E at temperature T

• Total number of particles N and  Total  energy E remains constant

Ni = N  and   Nii =  E

 Ni = 0  and  i Ni   =  0

• N0 particles are present in 0 energy level with g0 energy states, N1 in 1 energy
level with g1 energy states, N2 in 2 energy level with g2 energy states, Ni in i
energy level with gi energy states, ….. with no restriction



• Suppose there are Ni particles are present in i energy level

• The energy level i is considered to be degenerate, in which there are gi
energy states 

• (gi - 1) partitions are required to place the Ni particles in gi energy states

• No restriction on no. of particles occupying each energy state

• Permutations of Ni particles and (gi - 1) partitions simultaneously is given by 

(Ni + gi – 1)!

• Particles are identical and indistinguishable

• Permutations of Ni particles amongst themselves and (gi -1) partitions 
amongst themselves has to be included

• Actual no. in which Ni particles may be allocated in gi states will be given by
Ni+gi−𝟏 !

Ni! gi−𝟏 !

Derivation of Bose – Einstein Distribution



The Thermodynamic Probability will be given by:

W = 
𝑵

𝒊
+𝒈𝒊−𝟏 !

𝑵𝒊! 𝒈𝒊−𝟏 !

• W = 
𝑵𝒊+𝒈𝒊−𝟏 !

𝑵𝒊! 𝒈𝒊−𝟏 !
= 

𝟑+𝟒−𝟏 !

𝟑! 𝟒−𝟏 !
= 

𝟔 !

𝟑! 𝟑 !
= 

𝟔 𝐱 𝟓 𝐱 𝟒 𝐱 𝟑 𝐱 𝟐𝐱 𝟏

𝟑 𝐱 𝟐 𝐱 𝟏 𝟑 𝐱 𝟐 𝐱 𝟏
= 20

• W = 
𝑵𝒊+𝒈𝒊−𝟏 !

𝑵𝒊! 𝒈𝒊−𝟏 !
= 

𝟏+𝟒−𝟏 !

𝟏! 𝟒−𝟏 !
= 

𝟒 !

𝟏! 𝟑 !
= 

𝟒 𝐱 𝟑 𝐱 𝟐𝐱 𝟏

𝟏 𝟑 𝐱 𝟐 𝐱 𝟏
= 4

• W = 
𝑵𝒊+𝒈𝒊−𝟏 !

𝑵
𝒊
! 𝒈

𝒊
−𝟏 !

= 20 x 4 = 80

Example



• The Thermodynamic Probability is given by:

W = 
𝑵

𝒊
+𝒈

𝒊
−𝟏 !

𝑵
𝒊
! 𝒈

𝒊
−𝟏 !

…………………. (1)

• Taking logarithm, we get
𝑙𝑛 W = {𝑙𝑛 𝑵𝒊 + 𝒈𝒊 − 𝟏 ! – [𝑙𝑛 𝑵𝒊! + 𝑙𝑛 𝒈𝒊− 𝟏 !]} …………………. (2)

• Neglecting Unity as compared to 𝒈𝒊

𝑙𝑛 W =  {𝑙𝑛 𝑵𝒊 + 𝒈𝒊 ! – [𝑙𝑛 𝑵𝒊! + 𝑙𝑛 𝒈𝒊 !]} …………………. (3)

• Applying STIRLING’S Approximation:   𝒍𝒏 𝑵𝒊! = 𝑵𝒊𝑙𝑛𝑵𝒊 −𝑵𝒊 , we get

𝑙𝑛 W = {[ 𝑵𝒊+ 𝒈𝒊 𝑙𝑛 𝒈𝒊+ 𝑵𝒊 - 𝑵𝒊 + 𝒈𝒊 ] – [𝑵𝒊𝑙𝑛𝑵𝒊 −𝑵𝒊 + 𝒈𝒊𝑙𝑛𝒈𝒊− 𝒈𝒊]}

= { 𝑵𝒊+ 𝒈𝒊 𝑙𝑛 𝒈𝒊 +𝑵𝒊 − 𝑵𝒊− 𝒈𝒊 – 𝑵𝒊𝑙𝑛𝑵𝒊+𝑵𝒊 − 𝒈𝒊𝑙𝑛𝒈𝒊 + 𝒈𝒊}

=  {𝑵𝒊𝑙𝑛 𝒈𝒊 +𝑵𝒊 + 𝒈𝒊𝑙𝑛 𝒈𝒊+𝑵𝒊 –𝑵𝒊𝑙𝑛 𝑵𝒊 − 𝒈𝒊𝑙𝑛𝒈𝒊}

𝑙𝑛 W = {𝑵𝒊𝑙𝑛
𝒈
𝒊
+𝑵

𝒊

𝑵
𝒊

+ 𝒈𝒊𝑙𝑛
𝒈
𝒊
+𝑵

𝒊

𝒈
𝒊

}

𝑙𝑛 W = {𝑵𝒊𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

+ 𝒈𝒊𝑙𝑛 1 +
𝑵

𝒊

𝒈
𝒊

} …………………. (4)

Derivation of Bose – Einstein Statistics



𝑙𝑛 W = {𝑵𝒊𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

+ 𝒈𝒊𝑙𝑛 1 +
𝑵

𝒊

𝒈
𝒊

} …………………. (4) [where 𝑙𝑛 𝒙𝒊 = 
𝟏

𝒙
𝒊

 𝒙𝒊]

• On differentiating, we get

 ln W = {𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 +𝑵𝒊 𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

+ 𝑙𝑛 1 +
𝑵

𝒊

𝒈
𝒊

𝒈𝒊 + 𝒈𝒊𝑙𝑛 1 +
𝑵

𝒊

𝒈
𝒊

}

= {𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 +𝑵𝒊
𝑵

𝒊

𝒈
𝒊
+𝑵

𝒊


𝒈
𝒊
+𝑵

𝒊

𝑵
𝒊

+ 𝑙𝑛 1 +
𝑵

𝒊

𝒈
𝒊

𝒈𝒊 + 𝒈𝒊
𝒈
𝒊

𝒈
𝒊
+𝑵

𝒊


𝒈
𝒊
+𝑵𝒊

𝒈
𝒊

}

= {𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 +𝑵𝒊
𝑵

𝒊

𝒈
𝒊
+𝑵

𝒊

−
𝒈
𝒊

𝑵
𝒊
𝟐 𝑵𝒊 + 𝒈𝒊

𝟏

𝒈
𝒊

𝒈
𝒊

𝒈
𝒊
+𝑵

𝒊

𝑵𝒊} [where 𝒈𝒊 =0]

=  {𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 ……………………... (5)

• Most Probable Distribution  of particles
• The one for which W is maximum (Wmax)
• Condition for maxima:   W =   ln W = 0 …………………. (6)

• Putting the condition of eqn. 6

 ln W = {𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 =   0 …………………. (7) D
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• Distribution must satisfy the condition: N & E must remain constant,

• N & E must be equal to zero
N   =    Ni = 0 ........................   (8)

E   =   i Ni   =  0 ........................   (9)

• Using Lagrange's Method of Undetermined Multipliers

• multiplying eqn. 8 by  () and eqn. 9  by  ()
 N   =   Ni =   0 ......................... (10)

 E    =    i Ni   =  0 ......................... (11)

𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

𝑵𝒊 =   0 ..........................  (7)

• adding eqn.10 & 11 and subtracting eqn. 7, we get

 [ +  i− 𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

] Ni     =   0 .......................... (12)

• N0, N1, N2, N3,…….Ni  are independent of each other, so each term in summation must be zero  

Ni    0 

 +  i− 𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

=   0 .......................... (13)

𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

= ( +  i) ........................... (14)D
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• Removing logarithm from eqn. 14

𝑙𝑛 1 +
𝒈
𝒊

𝑵
𝒊

=   ( +  i ) ............................ (14)

1 +
𝒈
𝒊

𝑵
𝒊

=   e( + i ) ............................. (15)

𝒈
𝒊

𝑵
𝒊

= e( + i ) -1 where  = 1/kT [k = Boltzmann constant]

𝑵
𝒊

𝒈𝒊

=
𝟏

e( + i )−1
............................. (16)

................................ (17)

This equation gives Bose – Einstein Distribution

• Application: Putting e = 1  we can derive Planck’s Radiation Law

Ni   = 
gi

e( + i ) −1
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• Suppose we have a bulk/ macroscopic system with the following conditions:

• Consist of N indistinguishable particles with total energy E at temperature T

• Total number of particles and energy  must  remain conserved

• Restriction on Occupancy of energy states i.e., Not more than one particle 

• Internal structure taken into consideration

• Particle have half integral spin e.g. Electron, proton, ……… 

• The wave function is antisymmetric

• Such particles are called Fermions

----------- ------------ ----------- ------------

----------- ------------ ------------ ------------

----------- ----------- ------------ -----------

----------- ----------- ------------ -----------

FERMI - DIRAC STATISTICS - DERIVATION

Bose -Einstein Fermi - Dirac



• Consider 4 particles distributed in 2 energy levels in such a way that there are 3
particles in 1 and 1 particle in 0

• Now if each energy levels have 4 energy states, and with restriction that only 1
particle occupy each energy state, then no. of microstates will be:

1 1

0 0

• Fermi-Dirac Statistics: (Pauli’s Exclusion Principle)

• Bose – Einstein Statistics: (No restriction)

W = 4

W = 4 x 4 = 16

W = 4

W = 20 x 4 = 80



• Most Probable Distribution  ???
• The one with maximum no. of microstates  - gives Maximum Thermodynamic 

Probability (Wmax)

• W (N) = 0   or  ln W (N) = 0

• Consider  the distribution of N identical and indistinguishable particles among various energy 
levels - 0, 1, 2 ……………… having g0, g1, g2, …….. energy states with Total energy E at 
temperature T, with not more than one particle in each energy state (Pauli’s Exclusion 
Principle)

• Total number of particles N and  Total  energy E remains constant

Ni = N  and   Nii =  E

 Ni = 0  and  i Ni   =  0

• N0 particles are present in 0 energy level with g0 energy states, N1 in 1 energy level with g1 
energy states, N2 in 2 energy level with g2 energy states, ….. Ni in i energy level with gi
energy states with only one particle per energy state

Derivation of Fermi – Dirac Distribution



• Suppose there are Ni particles present in i energy level
• The energy level i is considered to be degenerate, in which there are 

gi energy states where gi >>> Ni

• Ni particles has to be arranged in i energy level with gi energy states
• Restriction on no. of particles  i.e., only 1 particle occupy per energy 

state
• Permutations for gi energy state will be gi!
• Particles are identical and indistinguishable 
• Permutations of Ni particles amongst themselves and (gi - Ni) vacant 

energy state amongst themselves has to be included
• Actual no. in which Ni particles may be allocated in i energy level will 

be given by
gi!

Ni! gi− Ni !

Derivation of Fermi – Dirac Statistics



The Thermodynamic Probability will be given by:

W = 
gi!

Ni! gi− Ni !

• W = 
gi!

Ni! gi− Ni !
= 

𝟒!

𝟑! 𝟒−𝟑 !
= 

𝟒 !

𝟑! 𝟏 !
= 

𝟒 𝐱 𝟑 𝐱 𝟐𝐱 𝟏

𝟑 𝐱 𝟐 𝐱 𝟏 𝟏
= 4

• W = 
gi!

Ni! gi− Ni !
= 

𝟒!

𝟏! 𝟒−𝟏 !
= 

𝟒 !

𝟏! 𝟑 !
= 

𝟒 𝐱 𝟑 𝐱 𝟐𝐱 𝟏

𝟏 𝟑 𝐱 𝟐 𝐱 𝟏
= 4

• W = 
gi!

Ni! gi− Ni !
= 4 x 4   = 16

Example



• The Thermodynamic Probability will be given by :

W = 
𝒈
𝒊
!

Ni! 𝒈
𝒊
− Ni !

…………………. (1)

• Taking logarithm, we get
𝑙𝑛 W = {ln 𝒈𝒊! – [𝑙𝑛 𝑵𝒊! + 𝑙𝑛 𝒈𝒊− Ni !]} …………………. (2)

• Applying STIRLING’S Approximation:   𝒍𝒏 𝑵𝒊! = 𝑵𝒊𝑙𝑛𝑵𝒊 −𝑵𝒊 , we get
𝑙𝑛 W = {[𝒈𝒊𝑙𝑛𝒈𝒊 - 𝒈𝒊] – [𝑵𝒊𝑙𝑛𝑵𝒊 −𝑵𝒊 + 𝒈𝒊−𝑵𝒊 𝑙𝑛 𝒈𝒊−𝑵𝒊 − 𝒈𝒊 −𝑵𝒊 ]}

= {𝒈𝒊𝑙𝑛𝒈𝒊 − 𝒈𝒊 – 𝑵𝒊𝑙𝑛𝑵𝒊 +𝑵𝒊 − 𝒈𝒊 −𝑵𝒊 𝑙𝑛 𝒈𝒊 −𝑵𝒊 + 𝒈𝒊 −𝑵𝒊}

= {𝒈𝒊𝑙𝑛𝒈𝒊 – 𝑵𝒊𝑙𝑛𝑵𝒊 − 𝒈𝒊𝑙𝑛 𝒈𝒊 −𝑵𝒊 + 𝑵𝒊𝑙𝑛 𝒈𝒊 −𝑵𝒊 }

𝑙𝑛 W = {𝒈𝒊𝑙𝑛
𝒈
𝒊

𝒈
𝒊
−𝑵

𝒊

+𝑵𝒊𝑙𝑛
𝒈
𝒊
−𝑵

𝒊

𝑵
𝒊

}

𝑙𝑛 W = {𝑵𝒊𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 − 𝒈𝒊𝑙𝑛
𝒈
𝒊
−𝑵

𝒊

𝒈
𝒊

} 

𝑙𝑛 W = {𝑵𝒊𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 − 𝒈𝒊𝑙𝑛 𝟏 −
𝑵

𝒊

𝒈
𝒊

} …………………. (3)D
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𝑙𝑛 W = {𝑵𝒊𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 − 𝒈𝒊𝑙𝑛 𝟏 −
𝑵

𝒊

𝒈
𝒊

}……………. (3)     [where 𝑙𝑛 𝒙𝒊 = 
𝟏

𝒙
𝒊

 𝒙𝒊]

• On differentiating, we get

 ln W = {𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 +𝑵𝒊𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 − 𝑙𝑛 𝟏 −
𝑵

𝒊

𝒈
𝒊

𝒈𝒊 − 𝒈𝒊 𝑙𝑛 𝟏 −
𝑵

𝒊

𝒈
𝒊

}

= {𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 +𝑵𝒊
𝑵

𝒊

𝒈
𝒊
−𝑵

𝒊


𝒈
𝒊
−𝑵𝒊

𝑵
𝒊

− 𝒈𝒊
𝒈
𝒊

𝒈
𝒊
−𝑵

𝒊


𝒈
𝒊
−𝑵𝒊

𝒈
𝒊

} [where 𝒈𝒊 = 𝟎]

= {𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 +𝑵𝒊
𝑵

𝒊

𝒈
𝒊
−𝑵

𝒊

−
𝒈
𝒊

𝑵
𝒊
𝟐 𝑵𝒊 − 𝒈𝒊

𝒈
𝒊

𝒈
𝒊
−𝑵

𝒊

−
𝒈
𝒊

𝒈
𝒊
𝟐 𝑵𝒊 }

= {𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 −
𝒈
𝒊

𝒈
𝒊
−𝑵

𝒊

𝑵𝒊 +
𝒈
𝒊

𝒈
𝒊
−𝑵

𝒊

𝑵𝒊 }

=   𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 ……………………... (4)

• Most Probable Distribution  of particles

• The one for which W is maximum (Wmax)

• Condition for maxima:   W =   ln W = 0 …………………...... (5)

• Putting the condition of eqn. 5

 ln W =      𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 =   0 ……………………….. (6) 
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• Distribution must satisfy the condition: N & E must remain constant,

• N & E must be equal to zero

N   =    Ni = 0 ........................   (7)

E   =   i Ni   =  0 ........................   (8)

• Using Lagrange's Method of Undetermined Multipliers

• multiplying eqn. 7 by  () and eqn. 8  by  ()

 N   =   Ni =   0 ......................... (9)

 E    =    i Ni   =   0 ......................... (10)

𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 𝑵𝒊 =   0 ..........................  (6)

• adding eqn. 9 & 10 and subtracting eqn. 6, we get

 [ +  i− 𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 ] Ni     =   0 .......................... (11)

• N0, N1, N2, N3,…….Ni  are independent of each other, so each term in summation must be zero  

Ni    0 

 +  i−𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 =   0 .......................... (12)

𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 = ( +  i) ........................... (13)
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• Removing logarithm from eqn. 13

𝑙𝑛
𝒈
𝒊

𝑵
𝒊

− 𝟏 =   ( +  i ) ............................ (13)

𝒈
𝒊

𝑵
𝒊

− 𝟏 =   e( + i ) . ............................ (14)

𝒈
𝒊

𝑵
𝒊

= e( + i ) +1 where  = 1/kT [k = Boltzmann constant]

𝑵
𝒊

𝒈𝒊

=
𝟏

e( + i )+1
............................. (15)

................................ (16)

This equation gives Fermi – Dirac Distribution

• Application: Derive expression for heat capacity  Cv of metals at low temperature

Ni   = 
gi

e( + i ) +1
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COMPARISON BETWEEN THE THREE STATISTICS

Maxwell - Boltzmann Bose - Einstein Fermi - Dirac

•Classical Statistics
•Internal Structure ignored
•Identical & distinguishable particles
•No restriction on occupancy of 
energy states
•Phase space not known
•Spin can have any value
•Wavefunction not involved
•At absolute zero, energy taken as 
zero
•Boltzmannons or Maxwellons
•Eg. Ideal gas molecules

•Quantum Statistics
•Internal Structure taken into account
•Identical & indistinguishable particles
•No restriction on occupancy of energy 
states

•Phase space is known ~ h3

•Zero or Integral Spin 
•Wavefunction Symmetric
•At absolute zero, energy is taken to 
be zero
•Bosons 
•Eg. Photons, mesons, 4He, 2H, ….
•At high temperature approaches 
Maxwell-Boltzmann distribution

•Quantum Statistics
•Internal Structure taken into account
•Identical & indistinguishable particles
•Not more than one particle in each 
state –Pauli’s Exclusion Principle

•Phase space is known ~ h3

• Half Integral Spin 
•Wavefunction Antisymmetric
•At absolute zero, energy  is not zero. 

•Fermions 
•Eg. Electron, proton,…..
•At high temperature approaches 
Maxwell-Boltzmann distribution



COMPARISON BETWEEN THE THREE STATISTICS

Maxwell - Boltzmann Bose - Einstein Fermi - Dirac

•No. of ways of achieving:

W = N!
𝒈
𝒊
Ni

𝑵
𝒊
!

•Max. Probability distribution


1

e( + i )

•Distribution Ni   = 
gi

e( + i )

•No. of ways of achieving:

W = 
𝑵

𝒊
+𝒈𝒊−𝟏 !

𝑵
𝒊
! 𝒈

𝒊
−𝟏 !

•Max. Probability distribution


1

e( + i ) −1

•Distribution Ni   = 
gi

e( + i ) −1

•No. of ways of achieving:

W = 
gi!

Ni! gi− Ni !

•Max. Probability distribution


1

e( + i ) +1

•Distribution   Ni   = 
gi

e( + i ) +1

N
i/

 g
i

i

N
i/

 g
i

i

N
i/

 g
i

i

1

10000 K

5000 K

1000 K

EF
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