LICHENS A unique life style, unusual creatures "Lichens are fungi that have discovered agriculture"

# What are lichens?

- Pioneer of Life, composite, Dual, symbiotic organisms showing
- Controlled parasitism
- Mutualism

A unique morphology, composed of Ascomycete and Basidiomycete fungi with an obligate symbiotic mode of nutrition with a photosynthetic partner

About 17,000-20,000 species known

# **The Photobiont**

 Most lichen partners are green algae (Division Chlorophyta)

**Common genera include Trebouxia, Hyalococcusand Trentepohlia** 

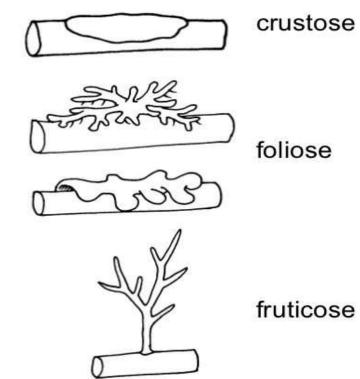
Some partners are Cyanobacteria
Common genera include Nostoc and Stigonema

# The Mycobiont

- Most lichen fungi are ascomycetes from the Series Discomycetes (apothecial forms) and Pyrenomycetes (perithecial forms)
- A few are basidiomycetes related to mushrooms and bracket fungi and one is a purported Zygomycete form

# Where do lichens grow?

- Rocks Saxicolous / Endolithic
- Bark Corticolous / Lignicolous
- Soil Terricolous
- Other substrates Stained glass, metal, insects, land tortoises etc.


Non-aquatic (with a few of exceptions in freshwater and the marine intertidal zone)

# **Some Features of Lichen Biology**

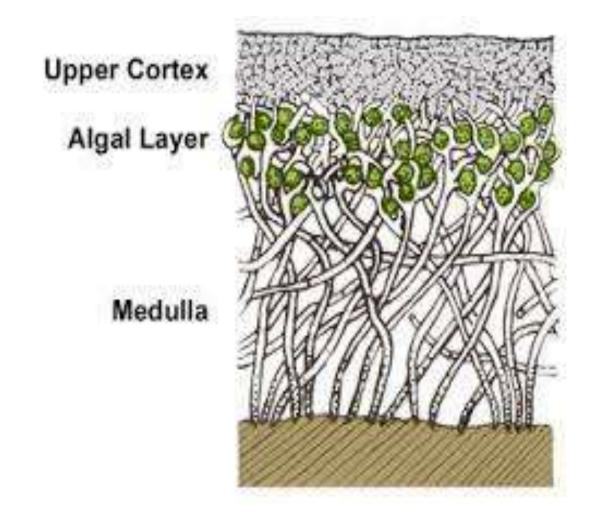
- Very slow growing organisms
- Cannot self-maintain water balance as in higher plants (homiohydric)
- Secondary chemical metabolites abundant and unique in the Fungi

# **Lichen Growth Forms**

- Crustose
- Squamulose
- Foliose
- Umbilicate
- Fruticose
- Gelatinous



lichen growth forms


## **Lichen Anatomical Features**

- Cortex Composed of conglutinated fungal hyphae
- Algal layer Usually located in the upper portion of the medulla below the upper/outer cortex
- Medulla Loosely interwoven inner portion of the thallus or may be as central strand in the fruticose lichen
- Rhizines Root-like attachment organs common in most foliose lichens
- Cilia Fibrillar outgrowths from lobe margins
- Cyphellae A type of air pore appearing as a crater on lower surfaces
- Pseudocyphellae Another type of air pore found in the upper cortex
- Cephalodia A second photobiont
- Tomentum External surface hyphal development

## **Crustose Lichens**

- Tightly attached to the substrate and considered to be the most primitive growth forms
  - Subtypesinclude:powdery,endolithic,endophloeodic, lobate, effigurate

## **Crustose Lichens**



## **Crustose Lichens**

#### Acarospora(epilithic) Lecanora(epiphloeodic)

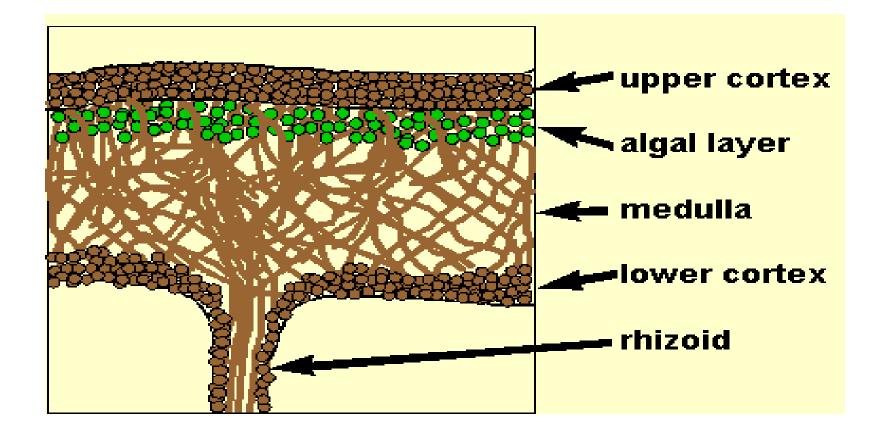




# **Squamulose Lichens**

- Thallus composed of individual, tiny lobes (areolae) which may be partially free from the substrate
- Often described as overlapping or scale-like structures

## **Squamulose Lichens**


Psora



# **Foliose Lichens**

- Leaf-like, flat with lobes (lacinae) and attached to the substrate usually with rhizines
- Great diversity and common in most environments

## **Foliose Lichens**



## **Foliose Lichens**

#### Peltigera

#### Melanelia

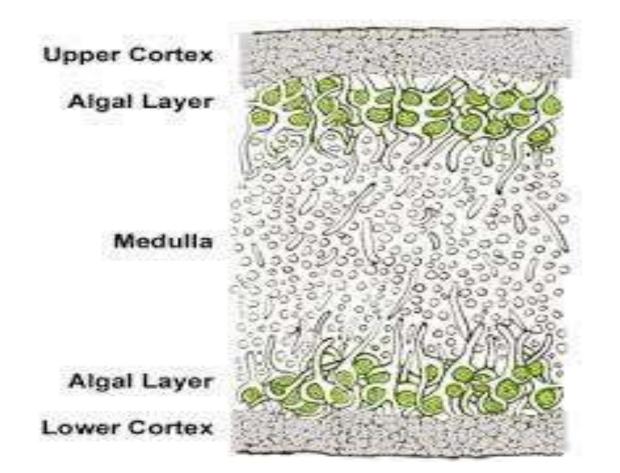
#### Parmotrema







# **Umbilicate Lichens**


- A foliose thallus attached by a single point (an umbilicus)
- Occur on rocks, both acidic and basic substrates

### **Umbilicate Lichens**

#### Umbilicaria



- Usually described as hair-like, shrubby, or pendulous species with rounded or flattened lobes
- Some taxa develop a two-fold thallus (thallus verticalis and thallus horizontalis)



#### Alectoria sarmentosa

#### Bryoria





#### Cetraria

#### Cladina "Reindeer Lichen"



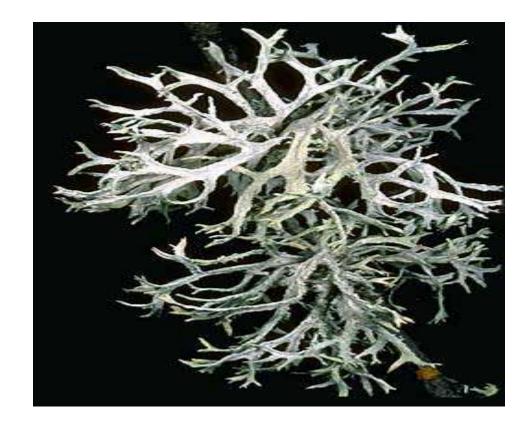


#### Chaenotheca



#### Letharia




#### Cladonia





#### Evernia





#### Pilophorus

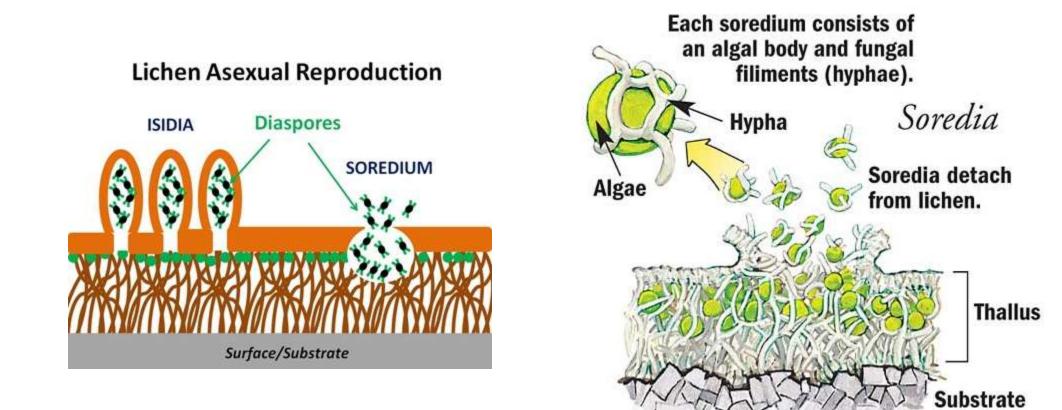
Usnea





# **Gelatinous Lichens**

- Thalli usually contain cyanobacteria
- Often dark blue-green, brown, or black in color


## **Gelatinous Lichens**

#### Collema



# Reproductive Structures Asexual

- Symbiotic asexual propagules
- **Soredia** Contain both fungal hyphae and photobiont cells Develop from outgrowth of the medulla
- **Isidia** Simple, warty, globose or coralloid outgrowths of the medulla with a cortical covering
- Lobules Flattened, corticate ""flapsflaps"" of thallus tissue on the margins or surface of some foliose species
- Vegetative, non-symbiotic reproduction
- **Conidia on conidiophores produced in pycnidia –** Tiny, flaskTiny, flask-like or globose fungal structures



# Reproductive Structures Sexual

- Mazaedia Type of ascoma (ascocarp)
- Apothecia Produces a distinct thalloid exciple with photobiont cells present
- Perithecia Bottle or flask like ascomata embedded in the thallus
- Hysterothecia Elongated or branched ascomata with a split like hymenium
- Pseudothecia (ascolocular) Resemble perithecia (especially in crustose, embedded species) or apothecia







# 

Surface/Substrate

## **Economic Importance of Lichens**

- Food for humans and other animals
- Medicinal problems and uses
- Lichens as dyes
- Lichens in the perfume industry
- Miscellaneous uses
- Biodeterioration problems

## Lichens as Food

- **Lichens as Food for Humans**
- Rich in carbohydrates, less proteins and lipids
- Human consumption is limited
- Umbilicaria, Bryoria used by native peoples of North America
- Sometimes used for survival (Cladina, Cetraria)

# Medicinal problems and uses

- Usnic acid has been shown to inhibit the growth of gram+ bacteria
- Active ingredient in some topical ointments sold in Europe and Russia ("USNO, BINAN")
- Some lichen fatty acids and carbohydrates have antitumor effects in study animals



Orchil (purple dyes)

Earliest documented use from ancient Rome as a purple dye or togas using *Roccellaspecies from rocks around the Mediterranean* 

Crottal(brown dyes)

**Extracted from Parmelia, Ochrolechia, Evernia and Xanthoparmelia spp** 

# **Perfume Manufacture**

- Many companies buy many of tons of lichens every year
- Involved in the manufacture of "moss" and "leather" fragrances in perfumes and some types of soap

## **Biodeterioration Problems**

 Damage to stained glass windows in old cathedrals in Europe due to "etching" of the glass by lichen growth or Caloplaca/Xanthoria on roof tiles

# **Miscellaneous Uses**

- Production of litmus paper
- Commercial Products
- Material for model trains, landscape designs and architectural renderings
- Decorative displays
- Illustrations for stamps

# Lichens and (Air) Pollution

#### Lichens are used as indicators of different Types of Pollutants

- SO<sub>2</sub> as by-product of coal or fuel oil combustion, ore reduction, paper manufacture, and automobile exhaust
- Photochemical toxins such as ozone, NO<sub>2</sub>, PAN (peroxyacetylnitrate)
- Acid Rain
- Heavy Metals from pesticides and insecticides
- Lead (Pb) from gasoline (tetraethyl lead) or from industrial activities
- Fluorine as a by-product of aluminum, zinc and phosphate ore reduction or from power plants
- Nickel (Ni) from coal combustion, industrial processes, and automobile exhaust
- Mercury (Hg) from pesticides and insecticides
- Zinc (Zn) from automobiles
- Chromium (Cr) from power plants
- Oil Spill Pollution
- Ionizing Radiation from nuclear testing or accidents

# **Index of Atmospheric Purity**

• The Index of Atmospheric Purity (IAP) was based not only on presence or absence, but on the species frequency and an "ecological index" for the species

 $IAP = 1/10 \Sigma n = 1 x Qifi$ 

n= the number of species at the site.

- Qi= ecological index of toxiphoby of the i th species expressed as the average number of species found with it.
- fi= frequency-coverage on a scale of 1 to 5.

Larger vales = cleaner air