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Relativistic Quantum Mechanics

Notations

In the four dimensional space-time manifold, commonly known as the

Minkowski space, the four vectors are defined by
ot = (et,x),
r, = (ct, —x). (p =0,1,2,3)

The contravariant and the covariant vectors are related to each
other through the metric tensor of the four dimensional manifold,
namely,
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The operator implying differentiation with respect to a contravariant (covariant)
coordinate vector component transforms as a component of a covariant (contravariant)

vector, 5 5
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where ﬁ:[i, a,,%):(é’l,é‘z.aﬂ ( o' -a* - 53) is the 3-divergence.
ox

(thus V.4=8,4%).
We may then define a 4-divergence of a 4-vector 4“ by
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In this notation the 4-dimensional d’Alembertian operator is the contraction
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and is a scalar under Lorentz transformations.

Klein-Gordon equation
The relativistic relation between the energy and momentum of a free particle is

E? :}—5202 +miet

Substituting fﬁif =—ihV . we have
ot
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Simplifying the above equation we get - \vj =0
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This equation is known as Klein-Gordon equation.

There is no way in which the Pauli spin matrices can be included in Klein-Gordon equation
without destroying the invariance of the theory. This is because the spin matrices transform like
the components of three dimensional vector, rather than a four dimensional vector.

Thus the Klein-Gordon relativistic equation represents a particle that has no spin.

Solution of Klein-Gordon equation is of the form

v = Nexp(i(p-X - Et))
where N is the normalization constant and

E=+p*c +mc*)"”



In addition to the acceptable E > 0solutions, we also have negative energy solution. A
second problem is that E < 0 solutions are associated with a negative probability density. The

negative energy solutions cannot be simply discarded as these correspond to antiparticles.

Plane wave solutions

Klein-Gordon equation also has plane wawve solutions which are
characteristic of free particle solutions. In fact, the functions

e:Fik‘-:c — e:F'i?-c,_,:f“ — e:F'i?-c“:r,_, — e:F?'(k‘gt—k-x]
with &* = (k", k) are eigenfunctions of the energyv-momentum operator,
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Sy,
so that +A&" are the eigenvalues of the energyv-momentum operator.

This shows that the plane waves define a solution of the Klein-Gordon
equation provided
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Defining the probability current density four vector as

T = (G"T) = (p, T)
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This shows that the continuity equation for the probability current is

where

a0t =20 |~ 3—o0
The probability current density
1 *
J = — (V'VW - W Vy')
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of course, has the same form as in non-relativistic gquantum mechan-

ics. However, we note that the form of the probability density (which
results from the requirement of covariance)

__ E * W a W "
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is quite different from that in non-relativistic gquantum mechanics
and it is here that the problem of the negative energcy states shows

up. For example, even for the simplest of solutions, namelyv, plane
waves of the form

@) = e

we obtain
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Since energy can take both positive and negative wvalues, it follows
that p cannot truly represent the probability density which, by defi-
nition, has to be positive semi-definite. Klein-Gordon equation is
second order in time derivatives. This has the consequence that
the probability involves a first order time derivative and that is
how the problem of the negative energy states enters.
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The positive energy solutions alone do not define a complete set
of states (basis) in the Hilbert space and, consequently, even if

we restrict the states to be of positive enerev to begin with. nesative

energy states may be generated through guantum mechanical
corrections.

It is for these reasons that the Klein-Gordon equation was abandoned

as a quantum mechanical equation for a single relativistic particle.



Dirac equation

-

The origin of negative probability density is the second order derivative £ in the Klein-
ot

Gordon equation. In order to avoid these problems, Dirac in the year 1927, derived a

relativistic wave equation linear in = and V. He succeeded in overcoming the problem of

the negative probability density, with the unexpected bonus that the equation described spin-
1/2 particles.
Dirac approached the problem of finding a relativistic wave equation by starting from

the Hamiltonian of the form
ih % wl(7,t)= Hyl(7,t) or Ey =Hy
The simplest Hamiltonian that is linear in the momentum and mass term is
H =ca.p+ fnc’
Substituting H , we have
(E—ca.p—pme =0
or [Eh % + ihe@V — ﬁmczjw =0
where & has three components o, o and .
Multiplying by [E +c@.p + fmc?| from left, we have
lE + [c&ﬁ + Bmc? )JlE - [céﬁ + ﬁmcz) =0
[E2 - (cfj.f) + fmc? )(CEE.EJ + fmc? )},y =0
Using da.p= (fax +jo, + ka, ) (fpx +Jp, + kp, ): a.p +a,p,+a,p,
the term (c(i’.f? + ffmc’ )(cff. D+ ﬁmcz) can be simplified as follows:
(cé.ﬁ + fBmc? ](c a.p+ pmct )
= [c(cxxpx +a,p,+a.p, ]+ ,(imc2 ] [C(Q’Ipx ta,p,+a.p, )+ ﬁmcll
=c*l(ap? +alp +alpi ) ap.a,p, +a,pa.p, +a,p,ap, +a, 0@, P, +
a.p.a.p, +a.p.a,p, |+ mic 2 +me (e, p.f+a,p, B +a.p.f)+
mc*(Bet,p, + pe,p, + Ba. p,)
=clatp? +alpl +alp? +lae, +aya, )p.p, + (e, + o, )p,p, +
(.0, +a.e)p.pJem’c' p +me [(ﬂ’xﬁ +fat )p, + (ﬂfyﬂ + fa, )Py +(e.f+ pa, )Pz]
Using above relation, the above eq. becomes
E?—a?p? + alp)+aipl+ ((II(II +a,a, )pxpy + (nyc;fz +a,a,)p,p, +

(@,a, + e, )p,p.|-m @+ fe, )p, +\a,p+ba,)p, +(@,f+ fe,)p, |- mc* f*ly =0



This equation agrees with free particle equation

— R C—;ﬁl = RV iy +micty

when &, satisfy the relations

2 2 2
o, =a, =a; =1

B =1

ad +taa =ao +aa =aa +aa = 0
af+ pa, =a,p+ fa, =a,f+fa, =0
The four quantities &, @, & and [ anticommute (anticommutator of two operators A and B

is defined as {A,B}=AB+BA) in pairs, and their squares are unity. Further,
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and & are the Pauli spin matrices given by

More precisely
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Covariant form of the Dirac equation
The relativistic Dirac equation is given as
ih CZ—";{ = —ithcaNw + fmec’y
Multiplying by £ from left, we have
L L OW . — = 2.2
Jkﬂg =—ihefa Ny + G mc w

i) 2 = 1, therefore 5
B 6—":’ — _ihcfaN v + mctw (1)



Now we introduce Dirac j~matrices »* = (3, f&)where /0. 1. 2, 3. i.e.
0
vy =5
7' = pat = y°a* k=1.2.3

Using Dirac }matrices, €q. (1) may be written as

[ih}/“ af“ — mc]yf =0

or (iﬁ;v“a“ - mc) w =0

This eq. is the known as the covariant form of the Dirac equation.

Properties of Dirac matrices
The Dirac » matrices satisfy the following anti commutation relations
Y‘HVV 4 ?,V;y,u _ Zg_uv

where g“" is metric tensor given by

1 0 0 O
0—-1 0 O

E v —
* 0O 0 —1 0

0O 0 0 -1

Further, since },0 = ., we have
7= () =1
™ =(Bak) =a* ="
() = pa’ ot =-1
where £=1.2.3 and the superscript 7 denotes the Hermitian conjugate of a matrix which

is obtained by interchanging the rows and columns and taking complex conjugate of each

element. The Hermitian conjugation results can be summarized by

rT=yry?



Positron theory
Dirac proposed that the negative energy states are occupied and the exclusion principle
prevents transition into such occupied states. The normal states of the vacuum then consists
of an infinite density of negative energy electrons called as negative energy sea. It is assumed
that there are no electromagnetic or gravitational effects of these electrons but that deviations

from the norm produced by emptying one or more of the negative energy states can be

observed.
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Schematic diagram showing transition from negative energy to positive energy.
The absence of a negatively charged electron that has negative mass and kinetic energy
would then be expected to manifest itself as a positively charged particle that has an equal

positive mass and kinetic energy. In this way, a “hole” theory or positrons can be developed
without recourse to holes.

When an energy E > 2mqc” is supplied to an electron of negative energy, it can be
excited into a states of positive energy, as shown in figure . The absence of an electron of
charge —eand energy -E is interpreted as the presence of an antiparticle (a positron) of

charge +e and energy +E. Thus the net effect of this excitation is the production of

pair e-e .



Dirac’s equation with electromagnetic potentials

Terms involving electromagnetic potentials can be added to the Dirac’s relativistic

in a relativistic way by making the replacements
cr —>cp— ed
E-—»>FE—ep
where A4 and ¢ are the vector and scalar potentials, respectively. Substituting in eq. Dirac
equation, we get
lE—e;iﬁ—&-(cj}—eg]—&nczkﬂzi)

Multiplying above equation by lE —egp+a- (cji — e:é!.J+ LGmc? ]from the left, we get

J[E — egﬁ-}: — [(_:E . (cf) — e;i}]z —me* —(E—eg)a - (cf) — eﬁ)+ a - (cji — e;ilE— e.;z‘.-]'}// =0

Consider the identity
(@-pla-C)=B-C+ic{BxC)
Replacing B and C with (cp—ed), we get
la-(cp—ed)f =(cp—ed) +i6-(cp—ed)x(cp—ed)

Now (7 —ed)x(cp—ed)=—celdx p+ px 4)

The term Ax B+ px A can be evaluated as follows

(Axp+pxdly = Axpw+px(dy)
= —ih AxVW—Fng wf

= —ih|lAxV iy +Vxlpd
= —1hAwa+t,y’V x A+V #]

= —inlVx A%/
(Exf:r+_§5x:éi) = —mlvxa
Substituting , we have [cji — e;_i)x (cj'i — e;_i): ieficV x A = ieficB
where 2B is the magnetic field.
[EE - (cji —ed )]2 = (-:fji — eﬁ)z + iﬁ"-(iehcé)
= (-:':ﬁ - eﬁ]l — ehc5'.B
Now we consider the last two terms
l— (E —eg)a - (cji — eﬁ)+ & - (cji — QEXE - e;‘.ﬁ]}y
= [— Ea'-(cﬁ—eﬁ]—!—egﬁ&-(cﬁ—eﬁ]—!—ﬁ’-(cﬁ—eﬁ)E—&- (cji—eﬁ)ec;ﬁ},{/
= [—E&-cﬁ+£’&-eﬁ+e¢&-cj§—e¢5’-eﬁ+&-cﬁ£—&-eﬁE—&-cﬁetﬁ+&-e§e¢}/f
=le@ - (Ed— 4E)+cea - (g — po)l



Now [E;i—;ifj)y = E‘Ew—ﬁﬁw
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Further, (¢p — pohr = —gﬁiﬁ‘@'w+fﬁ‘$’(gﬁw}
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eq. takes the form

—(E—ef;ﬁ)ﬁ'-(cﬁ—eﬁ)+ﬁ'-(cﬁ—eﬁlE—egﬁ) = eﬁ'-(fﬁ% +ce&-fh€’;?5)
= iehc&-(la—A f’é)
c Of
_ = —iehca-E
where E:—lﬁ—A—ﬁ'gﬁ.
c Ot

Finally, substituting e get
l(E —ep) — (cﬁ — e;i}z —m?c* + ehc 5B — iehcd - E}u =0
Non relativistic limit
In order to obtain the non-relativistic limit we substitute
E — E+mc’
Further, we assume E'<<mc and e¢ <<mc’ . Now
(E —e;ﬁ-)l = (E'+m{‘.’2 _e¢)2
= m254 1+ E;E:@
mec”

mzcd[l + M + higher order ter_ms]
me

Neglecting higher order terms, we get
(E— e;i,‘!)z ~m'ct + 2(E'—ed)mc’

Substituting , we get

lﬁ(E‘—e;?ﬁ)mcz — (cf)— e;if + ehc&'-B —iehed - E’}/f =0

1 (. e-Y eh _ - ieh _ -
or Ew=|—|p——4| +eg— a-B+ o-E w
2m c 2me 2me

Here E'is equivalent to the time derivative operator ifi ,.i if a factor exp(—imc’t/h)is taken
ot

out of g . The term containing B has the form associated with the energy of a magnetic dipole

f R . .. - 7.
3 &'. In practical cases the term containing £ is of order of (v/¢)” times the
me

of moment f=

e@term and hence may be neglected in the non relativistic limit.



Dirac’s equation in a central field
The electron spin carries no energy in itself. Therefore, it can be observed only through its
coupling with the orbital motion of the electron. This coupling can be made visible either

through conservation of total angilar momentum or through the spin-orbit energy. In both
cases we work with such potentials A, ¢ that there is no transfer of angular momentum to the
electron. This implies that we have a central field (;i =0 and ¢ spherically symmetric).
Spin angular momentum

Dirac’s equation with electromagnetic potentials is given as

[E— e — (i.(cﬁ —e:{!-)— ,&mczly =0
With A(F,z)=0and @¢(7.7)= ¢(r), we have

(E—v—ca-b—Bmc* =0

Ew=(ca@-p+pmc +V )y
where V' =eg.

It might be expected that the orbital angular momentum L=F x pis a constant of
motion in such a central field. Let us investigate this point by calculating the time rate of

change of L in the Heisenberg picture.

ih d{;f —[z..H]=|z,.fc@ap+ pmc’ +v}
= [L_t_, {c(axpx +a,p, +a.p. )+ LPmc? + V}]
Using commutation relations

[Z..cap]=|L.. pmc* |=[L,.7()]=0

the above eq. becomes

ih ‘if;" =lz,.ca,p,]+[L,.ca.p.]
Now
[Z..ca,p,] = ca/lL.p,]
= c«, [J'Pz - ZPPP}:]
ca,{w..p,|-z,.2,}
= ca, {-""pj‘]pz +J’[pz.p).]— [—'_"P:-'lp_v - —"[P_,-—_PJ-:[%
= ithea,p.
Similarly [Lt=cazpz] = CaE[Lx’pf]

= C‘sz[ypz_Zp}'rpZ]

cat-z.p1py)



L )= @B+ pme* + V]
- [L"”{C((x-‘fpx ta,p,+ azpz)+ﬁmc2 "‘V}]
Using commutation relations [Lx,chpx] - le, ﬁrﬂczj _ ["[‘_1—: V(r)] o

ifi i" = [Lx,ct:zypy]+ L. .ca_p.]

Now [Lx’caypyJ = ca, [Lx’pyJ
-C-’(I}: _}pz _va.ﬂpy]
ca oo, - o2, )

ca, ﬂy’py]pf +y[p2’p}=]_ [Z,p}.]p}. - Z[p}.,p}:l}
thea, p,

Similarly  [Z,.ca.p.] = cea.[L..p.]

= ca, [}pz —ZPJ.::Pz]
cor, {— [Z= lepy}

—ifhcor, Py

L.
dz‘x = —iﬁc{{xz P, — tzypz)

Thus, L, is not constant of motion.

ih

However, on physical grounds it is possible to define total angular momentum that it is

constant in a central field of force.

do',
dt

i o' ]
o', fe@p+ pmc? + v ()

[o"x ] {C(O:’x p.tao,p,+a.p, )+ ﬁm02 + V(})}]

Using commutation relations lo-'x .a. ] =2ia, [, ,a.]=2ia,:[o", . B]=0:[0" .a,]=0
and the fact that o', commutes with p,.p and p, as pis differential operator and g'are

numbers, the above eq. becomes

do’',

if [cr‘Jr COL Py + Ca’zpz}

= c[ﬁ"x .a ]p‘ +cl6',.a.|p.

ZiC((I‘_pF —a,p,; )

Multiplying by #/2 and adding to iﬁ% , we have
t
z‘ﬁi£Lx +lﬁa'x} ~0
dt 2

: T = 1, - -
Defining J:L+5?zo" and S=Eho" we have  J=constant or {J,HIZO

where J can be taken as total angular momentum and S is the spin angular momentum of electron.
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Questions

1. Obtain the Klein-Gordon equation. What were its limitations?
2. Derive the Dirac equation for a free particle and obtain its solutions.

Develop the Dirac equation with the inclusion of electromagnetic vector and scalar

[y

potentials and obtain its non-relativistic limit.
4. Deduce the covariant form of Dirac equation and discuss the properties of Dirac -

matrices.

Ln

Derive the Dirac equation under influence of a central potential and show that spin-orbit

energy appears as an automatic consequence of the Dirac equation.

6. Apply Dirac equation for a central field to study the hydrogen atom and obtain the
relation for energy along with total spread in energy of fine-structure levels for a given
quantum number .

7. Discuss the positron theory and its limitations.

8. What are the identical particles and particle exchange operator? Obtain the eigenvalues

of particle exchange operator.



