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Semi-classical theory of radiation

In the semi-classical radiation theory, atoms of the material particles are treated quantum-mechanically.
But the electromagnetic radiation, with which these atoms interact, is treated classically. That is why,
this is called a semi-classical radiation theory.

The interactions between the particles and the radiation field correspond to interaction terms in the
Hamiltonian, which are treated by time-dependent perturbation theory.

Semi-classical radiation theory describes absorption and induced emission, but is insufficient to describe
the spontaneous emission of radiation.

The quantum theory of radiation is used to describe the spontaneous emission.

Hamiltonian of the atomic electron (for simplicity, one electron having mass ‘m’, charge ‘e’ and spin S),
in the absence of external perturbation is given by :

Ho = p%/2m + V(r)

When the electromagnetic radiation having vector potential A(r,t) and scalar potential o(r,t) is applied
on the atom, then due to interaction of electron with the electromagnetic radiation, p and V are
modified as :

p = (p—eA/c)and V = (V+ey)

Magnetic field B and electric field E are related to the vector potential A and scalar potential ¢ by B
=VxA and E=-V@ - (1/c) dA/0t, respectively.

Hence, the Hamiltonian of the atomic electron in an external electromagnetic field is given by :
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(We have assumed that only one atomic electron is involved in interaction and the nucleus is infinitely
large).
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Operating p-A on an arbitrary function y(r),

(p-A) y(r) = -ihV-Ay =-ih [i 0/0x + j 0/0y + k 0/9z)-A y
= -ih [(0AX/dx + 0Ay/dy + 0Az/dz)y + A-(i dy/dx + j Oy/dy + k 0y /0z)]
=-ih [(V-A) y + A-Vy] =-ih (V-A) y + A-(-ihV) y
=-ih [(V-A) + A-p] y
Choosing the Lorentz gauge V-A =0 and ¢ = 0, we have
p-A=A-p
Therefore,
H = p?/2m - (e/mc) A-p + (e/2mc?) A’ + V(r) - (e/mc) S-B
=Ho+ H'(t)
where, Ho=p?/2m +V(r) is the unperturbed ‘atomic’ Hamiltonian and
H’(t) = - (e/mc) A-p + (€2/2mc?) A’ — (e/mc) B-S
is the time dependent perturbation term.
For a semi classical treatment of radiation, the term A? (being small) is ighored.
Hence, the small perturbation, in the low intensity limit, is
H'(t) = - (e/mc) A-p — (e/mc) B-S
For a plane electromagnetic wave of frequency w = ck, the time dependence of
A (rt)is
A (r,t) =2 |Ao|€ cos (k.r — wt)
= Ao g exp [(ik.r - iwt)] + A'o € exp [- (ik.r - iwt)]

The Coulomb gauge condition V-A = 0 yields k:Ag = 0 i.e. A(r,t) lies in a plane perpendicular to the
wave’s direction of propagation.

The electric E(r,t) magnetic field B(r,t) associated with the vector potential A (r,t) are given by
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[since k =k n = (®w/c) n]
These two relations show that E and B have same magnitude |E| = |B|.

Energy density for a single photon of the incident radiation is given by
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u=—/(E]* +|B|*) = —|E|? = —5|4o|*sin’(k - ¥ — wt)
8 4 e

Averaging this expression over time. we see that the energy of a single photon per unit volume,
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he/ V. is given by (w? /2w )| Anl? = hew/ ¥V and hence | Agl? = 2rhe?/(wV). which. when

put into the above equation for A (r,t) gives
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This gives
H'(t) = - (e/mc) A(r,t)-p — (¢/mc) B:S

= - (e/mc) (2mhc?/wV)Y2 g-p[exp (ik.r - iwt) + exp (- ik.r + iwt)] — (e/mc) B-S

Thus, the interaction of an atomic electron with radiation has the structure of harmonic perturbation.
The term exp (-iwt) gives rise to absorption of incident photon of energy hw by the atom i.e. absorption
occurs when the atom receives a photon from radiation; and exp (iwt) to stimulated emission of a
photon of energy hw by the atom, which occurs when radiation gains a photon from decaying atom.

In stimulated emission, one starts with one (incident) photon & ends up with two — incident photon plus
the photon given up by the atom resulting from transition of atom from higher to lower energy level.

When there are large no. of atoms in the same excited state, a single external photon triggers an
avalanche of photons (LASER).
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(a) Absorption b) Stimulated emission ¢) Spontaneous emission

Classical treatment do not account for ‘spontaneous emission’, which occurs even in the absence of
external perturbing field. Spontaneous emission is a purely quantum effect.

Considering the small time dependent perturbation H’, if the system is initially in state |i> and the
perturbation is turned on at t = 0, the first order perturbation amplitude for finding the system in state
|f>att>0is given by
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with hw = Ef - Ei. Integrating over dt’, we obtain
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Here T* are the transition matrices and have the matrix elements for a one-electron system in a linearly
polarized radiation field as

Ti* = - (e/mc) < f|e™*"Aq[e-p * iS+(kxe)] |i >
Since, (e ie-l)/e = (e ie/Ze i0/2 _ e ie/Ze —19/2)/9

=2ie®?sin (6/2)1/0

=[ie®?sin (8/2)1/ (6/2)

we have
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Therefore, the transition amplitude
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Transition probability P (t) = |aq!¥ (t)]2
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Transition probability is an oscillating sinusoidal function with a period 2nt/ws. It has an interference
pattern and decays rapidly as ® moves away from ® = £ ws. The height and width of the main peak are
proportional to t? and 1/t; ‘t’, being the interaction-time of electron with the radiation field i. e. time
during which e.m. field is on.

Transition peaks are maximum either at wr = - ® or at s = ® i.e. probability of transition is maximum
when the frequency of perturbing field © = + ws.

i. Absorption (W, > 0):
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Line Width : It is the width of the main peak at half of the maximum intensity. Its quantum analogue is
initial transition probability per unit time for spontaneous emission.
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hw=E; —Ef hw = Efs— E;
Ef E;
Stimulated emission Absorption of a
of a photon of energy A photon of energy hw

Thus, the effect of time dependent perturbation of the quantum system is to absorb or emit radiation
guantum (photon) by or from the system as a result of electronic transition.

For a strictly monochromatic field, these transition probabilities depend strongly on the difference ® - |(0ﬁ|.
and lead to a nonstationary transition rate. A transition probability that is linear in time (constant transition rate)
is obtained if one considers the transition from an initial state |i) to a continuum of final states |f }. In this case,
the transition rate is obtained by using a Fermi golden rule:
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where p(Ef) is the density of the final states. Similarly, when the radiation field is not monochromatic, but rather
contains a spectrum of frequencies u(®), the transition rate is
2 2
4?1: e U {m r') ik - ~ A 2
L(F1e™ [ -ptiS- (kx£€)11d) |
@

W, = 2,2
4 m
where |i) and |f ) are the initial and final (discrete) states, and the plus/minus signs correspond to absorption and
induced emission, respectively.

MULTIPOLE TRANSITIONS
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In the long wavelength approximation, e~ "= 1+ik-r--- so T;- is given by the following multipole

expansion:
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The first term corresponds to an electric-dipole transition. The second term corresponds to a magnetic-
dipole transition, and the third term corresponds to an electric-quadrupole transition. Usually, the transition rate
is dominated by the electric-dipole term; in this case the transition rate is
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However, for particular states |i) and |f), (f I€ - r|i) may vanish. This state is called the forbidden transition.
Note that for an isotropic external radiation field, the polarization vector € is randomly oriented. Averaging the

components of the unit vector £ over all angles gives
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are known as the Einstein coefficients for absorption and induced emission.

SPONTANEOUS EMISSION
An excited atomic system can also emit radiation in the absence of an external radiation field.
The transition rate for a spontaneous transition, in the dipole approximation, is given by
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where A, is the Einstein coefficient for spontaneous emission.

Electric-dipole fransitions: To obtain the selection rules for electric-dipole transitions we consider matnx ele-
ments of the form {flxli), { flylr). and (f|zIry where 1) and |f) are eigenstates of an electron moving in a
central potential. The unperturbed wave function is then given by

jmzl-r.-f.m.-} =y, =R,V (8,4)
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where ]","' (6, ¢) are the spherical harmonic functions. In this representation,
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Therefore, the matrix element { f|z|7) is proportional to the angular integral
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which is different from zeroonly if Al = {1, = 1 and Am = m;~m, = 0. Similarly, the matrix elements
(flxdi) and {flyli) are proportional to linear combinations of the form
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which are different from zero only if A/ = +1 and Am = =1. Grouping these results together we finally
obtain
{Ai’ = -1, = £l

Am = me-m, = 0, %1
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N, = number of systems (molecules) in state of energy E,, (upper state)

N, = number of systems (molecules) in state of energy E, (lower state)

At temp T, Boltzmann law gives:
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At equilibrium :

rate of downward transitions = rate of upward transitions
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Take “sample” to be black body, reasonable approximation.
Planck’s distribution formula

8rhv, 1
ﬂvm) — 3 kv kg T
e —1
Gives Brrhvjm
Am.—:m =TBm—>n
327, 2
mon =3 ol
Spontaneous emission — light not necessary,

I=0, v dependence.

Spontaneous Emission

v* dependence

No spontaneous emission - NMR

v =108 Hz

Optical spontaneous emission

v =101°Hz

Typical optical spontaneous emission time, 10 ns (103 s).
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NMR spontaneous emission time — 10'? s (=10° years).

Longer magnetic dipole transition is much weaker than
optical electric dipole transition.
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Assignments

1. What is semi-classical theory or radiation ?

2. Write expression for Hamiltonian of the atomic electron in the external electromagnetic field.

3. Obtain expression for the transition probability at resonance in the stimulated emission of radiation.
4. What is line width?

5. What are multipole transitions ? Write the selection rules for electric-dipole transitions.



