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Identical Particles 

In quantum mechanics, a (quantum) particle is described by a wave packet of finite size. The 
simultaneous exact specification of position (spread of wave packet) and momentum of the particle is 
restricted by the Heisenberg’s uncertainty principle.   

Therefore, there is no way to keep track of individual particles separately, especially if they interact with 
each-other to an appreciable extent.  

In quantum mechanics, the wave functions of the particles overlap considerably and hence the quantum 
particles are indistinguishable. 

Physical Meaning of Identity 

Identical particles in a system remain unaltered by interchanging them.  

In quantum mechanics, identical particles can be substituted for each-other with no change in physical 
situation of the system. 

However, with the spin consideration, identical particles can be distinguished, if they have different spin 
components along some particular axis e.g. z-axis, which remain unchanged during elastic collisions.  

Symmetric and Antisymmetric Wave Functions 

Schrodinger equation for n identical particles is  

H (1,2,---n) ψ (1,2,---n,t)  =  iħ ∂/∂t ψ (1,2,---n,t)      ------   (1) 

where each number represents all coordinates (position and spin) of one of the particles.  

Hamiltonian H is symmetrical in its arguments due to identity of particles, which means the particles can 
be substituted for each-other without changing the Hamiltonian H or any other observable.  

There are two kinds of solutions of wave function ψ of eq. (1) that have symmetric properties of 
particular interest. 

(i) Symmetric wave function ψS : A wave function is symmetric, if the interchange of any pair of particles 
among its arguments leave the wave function unchanged.  

(ii) Antisymmetric wave function ψA : A wave function is antisymmetric, if the interchange of any pair of 
particles among its arguments changes the sign of the wave function. 

Symmetric character of a wave function does not change with time i.e. if ψS (or ψA) is symmetric (or 
antisymmetric) at a particular time t, then HψS (or HψA) and hence ∂ψS/∂t (or ∂ψA/∂t) and the 
integration of wave function ψS (or ψA) are always symmetric ( or antisymmetric). 

If P is an exchange operator, then  



P ψS (1,2) =    ψS (2,1) 

P ψA (1,2) = - ψA (2,1) 

Construction of symmetric and antisymmetric wave functions from unsymmetrized functions : 
Exchange Degeneracy 

If the arguments of wave function ψ are permuted in any way, then the resulting wave function is also a 
solution of equation (1). n! Solutions can be obtained from any one solution, each of which corresponds 
to one of the n! permutation of the n arguments of ψ. Any linear combination of these functions is also 
a solution of the wave equation (1). The sum of all these functions is symmetric (unnormalized) wave 
function ψS ,since interchange of any pair of particles changes any one of the component function into 
another of them and the latter into the former, leaving the entire wave function unchanged. 

An antisymmetric unnormalized wave function can be constructed by adding all the permuted wave 
functions that arise from original solution by means of an even number of interchanges of pairs of 
particles (cyclic ones) and subtracting the sum of all the permuted wave functions that arise by means of 
an odd number of interchanges of pairs of particles in the original solution. 

In cases where Hamiltonian does not depend on time, stationary state solutions 

ψ (1,2,---n,t)  =  φ (1,2,---n) e-iEnt/ħ     ----- (2) 

can be found and the time independent Schrodinger’s eqn. can be written as  

H (1,2,---n)  φ (1,2,---n)  =  E φ (1,2,---n)                    ----- (3) 

There are n! solutions of this equation (eigen functions) derived from φ (1,2,---n) by means of 
permutations of its arguments belonging to the same eigen value E. Any linear combination of these 
eigen functions is also an eigen function [solution of eq.(3)] belonging to eigen value E. Hence, the 
system is degenerate and this type of degeneracy is called exchange degeneracy. 

For a system of two particles, Schrodinger time independent wave equation is  

H (1,2) ψ (1,2)  =  E ψ (1,2)     -----  (4) 

2! = 2 solutions of this equation are ψ (1,2)  and ψ (2,1) and correspond to a single energy state E. 

Symmetric wave function can be written as  

ψS = ψ (1,2)  + ψ (2,1) 

and antisymmetric wave function can be written as  

ψA = ψ (1,2) –  ψ (2,1) 

For a system of three particles, Schrodinger time independent wave equation is  

H (1,2,3) ψ (1,2,3)  =  E ψ (1,2,3) 

This equation has following 3! = 6 solutions corresponding to the same eigen value E :  

ψ (1,2,3), ψ (2,3,1), ψ (3,1,2), ψ (1,3,2), ψ (2,1,3), ψ (3,2,1) 

Out of these six functions, those arising by an even number of interchanges of the pairs of particles in 
original wave function ψ (1,2,3)  are :  

ψ (1,2,3), ψ (2,3,1), ψ (3,1,2) 



and the functions arising by an odd number of interchanges of pair of particles  in original wave function 
ψ (1,2,3)  are :  

ψ (1,3,2), ψ (2,1,3), ψ (3,2,1) 

Therefore, symmetric (unnormalized) wave function can be written as :  

ψS = {ψ (1,2,3) + ψ (2,3,1) + ψ (3,1,2)} + {ψ (1,3,2) + ψ (2,1,3) + ψ (3,2,1)} 

and antisymmetric (unnormalized) wave function as :  

ψA = {ψ (1,2,3) + ψ (2,3,1) + ψ (3,1,2)} – {ψ (1,3,2) + ψ (2,1,3) + ψ (3,2,1)} 

Particle Exchange Operator 

Particle exchange operator P1,2 is defined as : 

P1,2  ψ (r1 s1; r2 s2) = ψ (r2 s2; r1 s1) 

If the two particles are identical, then the Hamiltonian must be invariant under interchange of particles 
i.e. energy of the system remains the same, if we merely relabel the particles. 

Eigen values and Eigen functions of Particle Exchange Operator 

The eigen value equation for the particle exchange operator is :  

P12 ψ (1,2) = α ψ (1,2) 

where α is the eigen value of operator P1,2 in state ψ (1,2).  

Operating again,  

P12
2 ψ (1,2) = P12  P12 ψ (1,2) = P12 α ψ (1,2) = α P12 ψ (1,2) = α2 ψ (1,2) 

From the definition of particle exchange operator, we have  

P12 ψ (1,2) = ψ (2,1) 

Operating again,  

P12
2 ψ (1,2) = P12  ψ (2,1) 

i.e.      P12
2 ψ (1,2) = ψ (1,2) 

Therefore,  

α2  =  1 or  α  = ± 1 

i.e. eigen value of particle exchange operator are ± 1.  

Eigen functions of particle exchange operator corresponding to eigen values +1 and -1 are symmetric 
and antisymmetric.  

P12 ψS = ψS    and  P12 ψA =  - ψA 

 This may be seen as follows :  

ψS = ψ (1,2)  + ψ (2,1) 

P12ψS = P12 [ψ (1,2)  + ψ (2,1)] = ψ (2,1)  + ψ (1,2) = ψS 

Also,          ψA = ψ (1,2)  - ψ (2,1)   

P12 ψA = P12 [ψ (1,2)  -  ψ (2,1)] = ψ (2,1)  -  ψ (1,2) = - ψA 



Thus, particle exchange operator applied twice brings the particles back to their original configuration 
and hence produces no change in the wave function.  

Commutation relation of Particle Exchange Operator with Hamiltonian 

We have,  

P12 ψ (1,2) = ψ (2,1) 

P12 H(1,2) ψ (1,2) = H(2,1) ψ (2,1) = H(1,2) ψ(2,1)  = H(1,2) P12ψ(1,2) 

[since Hamiltonian H is symmetric i.e. H(1,2) = H(2,1)]  

[P12 H(1,2) – H(1,2) P12] ψ (1,2) = 0 

As ψ(1,2) is non-zero,  

P12 H(1,2) – H(1,2) P12 = 0 

[P12,H]  =  0 

Thus, particle exchange operator commutes with Hamiltonian. 

Distinguishablility of Identical Particles 

Two identical particles are distinguishable if the sum of probability density of individual wave functions 
of the two states is equal to the probability density associated with the symmetrised wave functions i.e. 

|ψ (1,2)|2 + |ψ (2,1)|2  = |{ψ (1,2) ± ψ (2,1)}|2 = |ψ (1,2)|2 + |ψ (2,1)|2 ± 2 Re [ψ (1,2) ψ*(2,1)] 

Thus, if the space and spin co-ordinates of the exchange degenarate functions (of the two particles) are 
different, the interference term i.e. 2 Re [ψ (1,2) ψ*(2,1)] = 0 and particle wave functions do not 
overlap, making the particles distinguishable.   

Pauli’s Exclusion Principle 

For a system of non-interacting n identical particles, the approximate (unperturbed) Hamiltonian of the 
system is equal to the sum of Hamiltonian function for the separate particles i.e.  

H0(1,2,------n)  =  H0(1) + H0(2) + ------ + H0(n) 

and the approximate energy eigen function is a product of one particle eigen function of H0.  

ψ(1,2,---n)  =  φa(1) φb(2)----- φk(n) 

with E  =  Ea + Eb + ------- + Ek.  

H0(1) φa(1)  =  Ea φa(1) , etc. 

If the particles are Fermions (electrons), then for a system of two non-interacting particles, an 
antisymmetric wave function can be written as a determinant  

 

For a system of n non-interacting Fermi particles, the antisymmetric energy wave function can be 
written as 



 

This is called ‘Slater determinant’.  

Since a determinant vanishes if any two rows are identical, it is obvious that φA will vanish if more than 
one particle is in the same state i.e. if a = b.  

This is Pauli’s exclusion principle which states that no two particles described by antisymmetric wave 
functions can exist in the same quantum state.  

Connection between Spin and Statistics 

The symmetry property of wave function has close relationship with spin of the particle. 

(i) The identical particles having integral spin quantum numbers are described by symmetric wave 
functions  i.e.  

P ψS (1,2,3,----r,----s,----n)  =  +  ψS (1,2,3,----s,----r,----n) 

Such particles obey Bose-Einstein statistics and are called Bosons e.g. photons (spin 1) and neutral He-
atoms in normal state (spin 0). 

(ii) The identical particles having half odd integral spin quantum numbers are described by 
antisymmetric wave functions  i.e.  

P ψA (1,2,3,----r,----s,----n)  =  -  ψA (1,2,3,----s,----r,----n) 

Such particles obey Fermi-Dirac statistics and are called Fermions e.g. electrons, protons, neutron, 
muons (spin 1/2).  

Spin Angular Momentum 

Spin is intrinsic angular momentum (a quantum concept with no classical analogue).  

It is independent of r, θ and φ.  

It has two intrinsic states i.e. two z-components of spin momentum.   

Electron has intrinsic angular momentum characterized by quantum number ½.  

Intrinsic electron spin is a vector S (spin quantum number = ½) with sz = +1/2 and -1/2 and the respective 
spin wave functions are α and β (α and β are orthogonal).  

Spin angular momentum of electron : 

S α = √s(s+1)ħ α = √3/2 ħ α   sz α = ms ħ α = ½ ħ α 

S β = √s(s+1)ħ β = √3/2 ħ β   sz β = ms ħ β = - ½ ħ β 

∫α*β dσ = ∫β*α dσ = 0   ∫α*α dσ = ∫β*β dσ = 1 

[σ is spin variable.] 

Stern-Gerlach Experiment 



 In 1922, at the University of Frankfurt (Germany), Otto Stern and Walther Gerlach, did fundamental 
experiments in which beams of silver atoms were sent through inhomogeneous magnetic fields to 
observe their deflection. These experiments demonstrated that these atoms have quantized magnetic 
moments that can take two values.  

Inhomogeneous magnetic field was generated with –ve field gradient in z-direction i.e. ∂B/∂z < 0. The 
magnetic field is strong near N-pole and weak near S-pole, as in fig. When vapour of silver-beam was 
passed through this inhomogeneous B-field, it was observed to split into two traces, which were 
attributed to the two spin state of mz.  

 

Explanation  :    

Force acting on Ag-atom is   

F = - grad U = grad m.B      (U = - m.B) 

F = m cosθ ∂B/∂z   az = F/M0 = m/M0 cosθ ∂B/∂z , t = L/v 

z = ½ azt2 = ½ m cosθ (L2/M0v2 ) ∂B/∂z 

Classically, cos θ can have all possible values from -1 to +1, giving smear of Ag-beam after passing 
through B-field (not observed in this experiment).  

But quantum mechanically, due to space quantization, cos θ = ± 1. So, 

z = ±½ m (L2/M0v2 ) ∂B/∂z 

Goudsmit and Uhlenbeck hypothesis 

(i) Each electron has spin angular momentum S, whose component in z-direction can have values sz = ± 
½. 

(ii) Each electron has spin magnetic moment μs = - (e/m0c) S. 

Spin obeys commutation relations :  

[Sx,Sy] = iħεjkl Sl 

where εjkl is Levi-Civita symbol. It follows that S2 and Sz are :  

S2|s,ms> = ħ2s(s+1)|s,ms> 

Sz|s,ms> = ħms|s,ms> 

Spin raising and lowering operators acting on these eigen vectors give :  



S±|s,ms> = ħ √[s(s+1) – ms(ms±1)] |s,ms> 

where S± = Sx ± iSy  

All quantum mechanical particles possess an intrinsic spin, which is quantized (though this value may be 
zero, too), such that the state function of the particle is ψ(r,σ); where σ is out of the following discrete 
set of values  

σ ϵ {-sħ, -(s-1)ħ,---0-- +(s+1)ħ, +sħ} 

Bosons have integer spin and fermions have half-integer spin. Total angular momentum is the sum of 
orbital angular momentum and the spin.  

Pauli matrices 

Quantum mechanical operators associated with spin ½ observables are :  

Ŝ = (ħ/2) σ 

where in Cartesian components :  

Sx = (ħ/2) σx , Sy = (ħ/2) σy , Sz = (ħ/2) σz ; 

σx , σy and σz are Pauli’s spin matrices.  

 





 

Taking into account the effect of spin on the collision of two identical particles, we have for bosons, 
which  have symmetric wave functions  :     

ψsym = φs χs  or  ψsym = φA χA 

[here φ is space wave function & χ is spin wave function.]  

Fermions have anti symmetric wave functions  :  ψantisym = φs χA  or  ψantisym = φA χs  

If spin wave function χs = |sm> is symmetric, then space wave function φ is anti-symmetric (so that ψ is 
anti-symmetric) and  

dσA/dΩ  =  |f(θ) - f(π-θ)|2 

and if spin wave function χA = |sm> is anti-symmetric, then space wave function φ is symmetric (so that 
ψ is anti-symmetric) and  

dσs/dΩ  =  |f(θ) + f(π-θ)|2 

Since symmetric spin wave function  χs ⇒ |sm> = |1,0> , |1, ±1>  →  3  

and anti-symmetric spin wave function  χA ⇒ |sm> = |0,0>            →  1  

       (dσ/dΩ)fermions =  ¾ dσA/dΩ  +  ¼ dσs/dΩ  

  =  ¾ |f(θ) - f(π-θ)|2  +  ¼  |f(θ) + f(π-θ)|2  

  =  ¾  [f(θ) - f(π-θ)] [f(θ) - f(π-θ)] * +  ¼  [f(θ) + f(π-θ)] [f(θ) + f(π-θ)]* 



  =  ¾ [|f(θ)|2+|f(π-θ)|2 - 2Re {f (θ)f*(π-θ)}]+ ¼ [|f(θ)|2 +|f(π-θ)|2 + 2Re {f(θ)f*(π-θ)}] 

  =  |f(θ)|2 + |f(π-θ)|2 + [- ¾ x2Re {f(θ) f*(π-θ)}] + ¼ x2Re {f(θ) f*(π-θ)}] 

  =  |f(θ)|2 + |f(π-θ)|2 - Re {f(θ) f*(π-θ)}  

The result for 2s = odd (for fermions) or even (for bosons) can be summarized by writing the scattering 
cross-section σ (θ) as  

 

At  θ = π/2  :   

(dσ/dΩ)fermions  =  |f(π/2)|2 + |f(π/2)|2 - Re {f*(π/2) f(π/2)}  =  2|f(π/2)|2 - |f(π/2)|2 

   = |f(π/2)|2 

But   (dσ/dΩ)classical  =  |f(θ)|2 + |f(π-θ)|2  

(In classical mechanics, there is no interference term “Re f(θ) f*(π-θ)”.)  

At  θ = π/2  :   

(dσ/dΩ)classical  = 2|f(π/2)|2 

Therefore, at θ = π/2  :  (dσ/dΩ)classical  =  2(dσ/dΩ)fermions   

i.e. quantum differential scattering cross-section is half of classical differential scattering cross-section. 

If the space wave function is symmetric, then differential scattering cross-section 

dσs/dΩ  =  |f(θ) + f(π-θ)|2 

If the space wave function is anti-symmetric, then differential scattering cross-section  

     dσA/dΩ  =  |f(θ) - f(π-θ)|2  







 

 

Symmetric or antisymmetric many-particle wave functions can be constructed from unsymmetrized 
solutions that include the spin.  

It is sometimes convenient to choose the unsymmetrized solutions to eigen functions of the square of 
the magnitude of the total spin of the identical particles (S1 + S2 + ------ + Sn)2 and of the z-component of 
this total spin (S1z + S2z + ------ + Snz).  

These quantities are constants of motion, if the Hamiltonian does not contain interaction terms 
between the spins and other angular momenta.  

In addition, such functions are often useful as zero-order wave functions when the spin interactions are 
weak enough to be regarded as a perturbation.  

There is no loss of generality in choosing the unsymmetrized solutions in this way, since any solutions 
can be expressed as a linear combination of total spin eigen functions.  

Effect of identity and spin 

The interaction between identical particles does not depend on spin. In order to take into account the 
identity and spin of the two electrons, we need form an antisymmetric wave function from the products 
of χi

+(r1, r2) and appropriate spin functions. The spin functions can be taken to be the set of the following 
four symmetrised combinations : 

(+ +) 



1/√2 [(+ -) + (- +)] 

(- -) 

1/√2 [(+ -) - (- +)] 

where (+) = σx(-) and (-) = σx(+). 

In the elastic scattering of an electron from a hydrogen atom (which may be considered as core of 
infinite mass, as compared to electron), the spin of incident electron does not have any definite relation 
to the spin of atomic electrons. 

We can use either of these sets of spin functions, calculate the scattering with each of the four spin 
states of a set and then average the results with equal weights for each state. 

The first three of the spin functions (1) are symmetric and must be multiplied by the antisymmetric 
space function χi

+(r1, r2) - χi
+(r2, r1); the fourth spin function is antisymmetric and must be multiplied by 

χi
+(r1, r2) + χi

+(r2, r1).  

The asymptotic forms of the symmetrised space functions for large values of one of the electron co-
ordinates, say r1 are 

χi
+(r1, r2) ± χi

+(r2, r1) → C [exp (ikα.r1) + r-1 eikαr [fD(θ) ± fE(θ)] ωα(r2)      ---  (2) 

where ωα = core bound initial wave function, fD = direct or non-exchange elastic scattering amplitude for 
which incident electron is scattered and atomic electron is left in its original state; fE = exchange elastic 
scattering amplitude.  

The dots represent atomic excitation and θ is the angle between r1 and kα.  

              The differential cross-section is computed with the upper sign in one quarter of the collisions 
and with lower sign in three quarters of the cases.  

              Thus, we obtain 

σ (θ) = ¼ |fD(θ) + fE(θ)|2 + ¾ |fD(θ) - fE(θ)|2               ---  (3) 

            Equation (3) may also be derived without explicit reference to spin wave functions by making use 
of the fact that the particles having different spin components are distinguishable.  

           If in half the collisions, the electrons have different sum of direct and exchange cross-sections i.e. 
|fD(θ)|2 + |fE(θ)|2 and in the other half where the electrons are indistinguishable, the antisymmetric 
space function is used.  

          Thus, we obtain  

σ (θ) = ½ {|fD(θ)|2 + |fE(θ)|2} + ½ |fD(θ) - fE(θ)|2   ---  (4) 

 Obviously, equation (4) is same as equation (3).  

Thus, in the classical limit, where the identical particles are distinguishable, the interference term 
2Re[f(θ,φ)f*( π - θ, φ + π)] = 0 and the scattering cross-section σ (θ, φ) becomes just the sum of 
differential cross-section for observation of the incident particle (|f (θ, φ)|2 and (|f (π - θ, φ + π)|2.  

 

If f is independent of φ, then the scattering per unit solid angle will be symmetric about θ = 900 in the 
centre of mass co-ordinate system.  

(1) 
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Assignments 

1. What is the physical meaning of identity ? 

2.  How symmetric and antisymmetric wave functions can be constructed from unsymmetrized functions 
? 

3. Discuss distinguishability of identical particles. Explain Pauli’s exclusion principle with the help of 
Slater determinant. 

4. What is spin angular momentum ? Describe Stern-Gerlac experiment. Write Goudsmit and Uhlenbech 
hypothesis. 

5. Obtain expression for scattering cross-section for the collision of two identical particles.  

 


