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STATISTICAL THERMODYNAMICS
Classical Thermodynamics deals with the macroscopic matter

and describes the behaviour of large no. of molecules in terms
of properties like P, V, T.

Quantum Mechanics deals with matter at microscopic level and
the state is described by a wave function.

Statistical Mechanics provides the link between the microscopic
properties of matter and its bulk/ macroscopic properties.

Statistical Thermodynamics thus acts as a bridge between

Microscopic world & Macroscopic world

Quantum Mechanics and Classical Thermodynamics
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• System: If there is a collection of particles, each single particle is referred to as 
System

• Assembly: Collection of systems (particles) as a whole forms Assembly

• Ensemble: Collection of very large number of assemblies which are independent of
each other but which have been made macroscopically as identical as possible is
known as Ensemble introduced by W. Gibbs

SYSTEM, ASSEMBLY & ENSEMBLES 

Ensembles

Micro-Canonical 
Ensemble

Canonical 
Ensemble

Grand Canonical
Ensemble

✓ Same E , V, N
✓ Rigid, Impermeable,

Insulated Walls

✓ Same  T , V, N
✓ Rigid, Impermeable,

Conducting Walls

✓ Same  T , V,
✓ Rigid, Permeable, 

Conducting Walls
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MACROSTATE
The number of ways of obtaining a distribution by just specifying the
number of molecules (or phase points) in each energy state (or cell of
phase space)

THERMODYNAMIC PROBABILITY

The number of microstates corresponding to a particular  macrostate

and is represented by  W

MICROSTATE
The number of possible ways a particular distribution can be achieved

if molecules (or phase points) are distinguishable i.e. by specifying to

which energy state (or cell of phase space) molecules (or phase points)

temporarily belongs

MACROSTATE , MICROSTATE , THERMODYNAMIC PROBABILITY & DEGENERACY

DEGREE  OF  DEGENERACY

The number of energy states of an energy level having the same energy,

represented by Statistical Weight Factor , gi
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PRINCIPLE  OF  EQUAL   A   PRIORI   PROBABILITIES

All possibilities for the distribution of energy are equally probable

ESSENTIAL  CONDITIONS  FOR  DISTRIBUTION OF MOLECULAR  STATES 

Ni = N  and   Nii =  E (N & E must remain constant)

THERMODYNAMIC   PROBABILITY

STERLING'S   APPROXIMATION

ln N!   N ln N – N

W = N! / N1! N2!.... =   N! /  Ni!

MOST PROBABLE DISTRIBUTION

W (N) /  Ni = 0   or  ln W (N) /  Ni = 0

IMPORTANT  CONCEPTS  &  FORMULAS
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Results  from
Quantum Mechanics 

(Property of individual Microscopic matter)

Average property using Probability theory 
& Statistical methods  from

Statistical  Mechanics (Bulk matter)

Applied to 
Classical Thermodynamics
(Bulk/ Macroscopic System)

Gives  Property of
Bulk/Macroscopic System 

STATISTICAL  
THERMODYNAMICS

Nature of microscopic 
constituents  

&  Occupancy

ST
A

TI
ST

IC
S

Treatment

Different
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PARTICLE   STATISTICS

CLASSICAL

STATISTICS

Internal  structure ignored

Particles    distinguishable

MAXWELL –
BOLTZMANN   

STATISTICS

No restriction 
on occupancy

QUANTUM 

STATISTICS

Internal  structure  
considered

FERMI –DIRAC 

STATISTICS

Restriction 
on 

occupancy

Particles 

indistinguishable

BOSE –
EINSTEIN 

STATISTICS

Integral  Spin Half Integral Spin
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• No. of ways of arranging N distinguishable particles  W = N!

• No. of ways in which n distinguishable particles can be selected from N

distinguishable particles is  W = N!/(N-n)! n!

• No. of ways of arranging N distinguishable particles into groups  without restriction 

– Boltzmannons eg:  Gas molecules   

W = N!/N1! N2!.... (Boltzmann distribution)

• No. of ways in which N indistinguishable particles can be arranged in g states 

(g>>N) with not more than one particle in each state – Fermions (those with half 

integral spin) eg:  Electron

W = g!/(g-N)! N!  (Fermi –Dirac distribution)

• No. of ways in which N indistinguishable particles can be arranged in g states 

(g>>N) with no restriction – Bosons (those with integral spin) eg:  Photons

W = (g + N -1)!/(g-1)! N! (Bose-Einstein distribution)

PROBABILITY   
DISTRIBUTIONS

S Mathew



• Suppose we have a bulk/ macroscopic system with the following conditions:

– Consist of N distinguishable particles with total energy E at temperature T

– Isolated system with no interaction between particles

– No restriction on Occupancy of energy levels

– Total number of particles and energy  must  remain conserved

Ni = N  and   Nii =  E         (N & E must remain constant)

 Ni = 0  and  i Ni   =  0

----------- 3 ------------ 3 ----------- 3

----------- 2 ------------ 2 ------------ 2

----------- 1 ----------- 1 ------------ 1

----------- 0 ----------- 0 ------------ 0

• Such particles are called Boltzmannons e.g.  System composed of gas

MAXWELL – BOLTZMANN  DISTRIBUTION 
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• Most Probable Macrostate  ???
– The one with maximum no. of microstates  - gives Maximum Thermodynamic 

Probability (Wmax)
– W (N) /  Ni = 0   or  ln W (N) /  Ni = 0

• Consider  the distribution of Total energy E among various energy levels -
0, 1, 2 ……………… of N distinguishable particles at temperature T

• Total number of particles N and  Total energy E remains constant
Ni = N  and   Nii =  E …….. (1)

• N0 particles are present in level with 0  energy level, N1 in level with 1 energy, N2 in 
level with 2 energy, …..

• No. of ways of achieving :

………. (2)!.....!!

!

210 NNN

N
W =
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• Taking logarithm on both sides of eqn. 2 

W = N! / N0! N1! N2!.... 

ln W = ln N! - (ln N0! + ln N1! + ln N2! + ……) 

= ln N! - ln Ni! .......................... (3)

• According to Stirling’s Approximation

ln N !     = N ln N – N ........................ (4)

ln Ni! =    Ni ln Ni  – Ni .

 ln Ni! =  Ni ln Ni  – Ni (But    Ni    =    N )

=  Ni ln Ni  – N ..........................(5)

• Substituting eqn. 4   &  eqn. 5  in  eqn. 3, we get

ln W = N ln N – N   –  Ni ln Ni  + N

ln W = N ln N – N   –  Ni ln Ni  + N

ln W = N ln N  –  Ni ln Ni  .......................... (6)
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• Most Probable Distribution  of particles

– The one for which W is maximum (Wmax)

– Condition for maxima: W and  ln W will have to be zero

W =   ln W = 0 ................... (7)

• On differentiating eqn. 6,   ln W =  N ln N  –  Ni ln Ni results in

 ln W =   N ln N  –  Ni ln Ni  

 ln W =     –  Ni ln Ni  ................. (8)   [N ln N = 0 , (constant) = 0]

• Putting the condition of eqn. 7

 ln W =     –  Ni ln Ni     =   0 ................... (9)

= – [ Ni ln Ni   +   ln Ni Ni ]  =   0 

= – [ Ni +   ln Ni Ni ]  =   0    where

= – [ Ni    +    ln Ni Ni ]  =   0 [ Ni =   0]

= – [ ln Ni Ni ]  =   0  ...................... (10)

i

i

i N
N

1
  Nln  =i

i

N
N

1
 
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• Distribution must satisfy the condition: N & E must remain constant,
– N & E must be equal to zero

N   =    Ni = 0 ........................ (11)

E   =   i Ni   =  0 .......................... (12)

• Using Lagrange's Method of Undetermined Multipliers

– multiplying eqn. 11 by   and eqn. 12  by  

 N   =    Ni =   0 ......................... (13)

 E    =    i Ni   =   0 ......................... (14)

– and adding to eqn. 10,            – [ ln Ni Ni ]  =   0, we get

( +  i - ln Ni ) Ni     =   0 .......................... (15)

• N0, N1, N2, N3,…….Ni  are independent of each other, so each term in 

summation must be zero Ni    0 

 +  i - ln Ni   =   0 .......................... (16)

ln Ni   =   ( +  i ) ........................... (17)
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• Removing logarithm from eqn. 17

ln Ni   =   ( +  i ) ............................ (17)

Ni   =   e ( + i ) where  = - 1/kT [k = Boltzmann constant]

............................. (18)

• For getting General Distribution Law, Degeneracy of energy states has to be incorporated.

For this a Statistical Weight factor gi is introduced for each energy level i

............................ (19)

This equation is known as Maxwell – Boltzmann Distribution

Ni   =   e e-i/kT

Ni   = gi e
 e-i/kT
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• Maxwell – Boltzmann Distribution Law is given by

Ni = gi e e -i/kT .......................... (19)

• Taking summation over all energy levels from zeroth level (For all the particles present

in the system)

Ni   = gi e e -i/kT [Ni = N ]

N  = gi e e -i/kT .......................... (20)

• Dividing eqn. 19 by eqn. 20, we get

............................  (21)
Ni gi e e -i/kT

N  gi e e -i/kT
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This  gives the  general form of  Maxwell – Boltzmann Distribution Law

• Fraction of total molecules in the ith energy level

• The quantity in the denominator is represented by Q and is called Partition 

Function

• It is a great analytical tool in Statistical Thermodynamics

Ni gi e -i/kT

N  gi e -i/kT
.......................... (22)

Q  = gi e
-i/kT .......................... (23)
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