
M.Sc. (Computer Science)- Second SemesterSubject Name- “Practical Based on RDBMS(PL/SQL)”PL/SQL Cursor ad Package
M.Sc. (Computer Science)- Second SemesterSubject Name- “Practical Based on RDBMS(PL/SQL)”PL/SQL Cursor ad Package

By- Prof. Dileep Kumar SahuAssistant Professor
Department of Computer Application

Govt. Vishwanath Yadav Tamaskar Post Graduate Autonomous College, Durg (C.G.)
Email ID: dileepksahu20@gmail.com

Prof. Dileep Kumar Sahu, Assistant Professor

Contents

Prof. Dileep Kumar Sahu, Assistant Professor

• PL/SQL CURSOR
• PL/SQL PACKAGE

Objective

Prof. Dileep Kumar Sahu, Assistant Professor

• We will learn how to create, compile, and execute a PL/SQL Cursorand package in Database.

PL/SQL Cursor
• When an SQL statement is processed, Oracle creates a memory area known as context area.
• A cursor is a pointer to this context area.
• It contains all information needed for processing the statement.
• In PL/SQL, the context area is controlled by Cursor.
• A cursor contains information on a select statement and the rows of data accessed by it.
• A cursor is used to referred to a program to fetch and process the rows returned by the SQL statement, one at a time.
• There are two types of cursors:
1. Implicit Cursors
2. Explicit Cursors

Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Cursor: PL/SQL Implicit Cursors
• The implicit cursors are automatically generated by Oracle while an SQL statement is executed, if you don't use an explicit cursor for the statement.
• These are created by default to process the statements when DML statements like INSERT, UPDATE, DELETE etc. are executed.
• Oracle provides some attributes known as Implicit cursor's attributes to check the status of DML operations.
• Some of them are: %FOUND, %NOTFOUND, %ROWCOUNT and %ISOPEN.
For example:
• When you execute the SQL statements like INSERT, UPDATE, DELETE then the cursor attributes tell whether any rows are affected and how many have been affected.
• If you run a SELECT INTO statement in PL/SQL block, the implicit cursor attribute can be used to find out whether any row has been returned by the SELECT statement. It will return an error if there no data is selected.

Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Cursor : Implicit Cursor

Attribute Description
%FOUND Its return value is TRUE if DML statements like INSERT, DELETE and UPDATE affect atleast one row or more rows or a SELECT INTO statement returned one or morerows. Otherwise it returns FALSE.
%NOTFOUND Its return value is TRUE if DML statements like INSERT, DELETE and UPDATE affect norow, or a SELECT INTO statement return no rows. Otherwise it returns FALSE. It is ajust opposite of %FOUND.
%ISOPEN It always returns FALSE for implicit cursors, because the SQL cursor is automaticallyclosed after executing its associated SQL statements.
%ROWCOUNT It returns the number of rows affected by DML statements like INSERT, DELETE, andUPDATE or returned by a SELECT INTO statement.

Prof. Dileep Kumar Sahu, Assistant Professor

The following table specifies the status of the cursor with each of its attribute.

PL/SQL Cursor : Implicit Cursor - Example
• Create customers table and have records:
• A Program to update the table and increase salary of each

customer by 5000.
• Create procedure:
DECLARE

total_rows number(2);
BEGIN

UPDATE customers
SET salary = salary + 5000;
IF sql%notfound THEN

dbms_output.put_line('no customers updated');
ELSIF sql%found THEN

total_rows := sql%rowcount;
dbms_output.put_line(total_rows || ' Customers updated ');

END IF;
END;
/
Here: SQL%ROWCOUNT attribute is used to determine the number of rows affected.

Prof. Dileep Kumar Sahu, Assistant Professor

Customer
Id Name Department Salary
1 Ramesh web developer 45000
2 Sohan program developer 55000
3 Mohan web designer 45000

Output: 3 Customers updatedAfter Execution of cursor the table will be updated as : Customer
Id Name Department Salary
1 Ramesh web developer 55000
2 Sohan program developer 65000
3 Mohan web designer 55000

PL/SQL Cursor: Explicit Cursors
• The Explicit cursors are defined to get more control over the context area.
• These cursors should be defined in the declaration section of the PL/SQL block.
• It is created on a SELECT statement which returns more than one row.
1. Declare the cursor:

• to initialize in the memory.
• It defines the cursor with a name and the associated SELECT statement.

• Syntax:
CURSOR name IS

SELECT statement;

Prof. Dileep Kumar Sahu, Assistant Professor

Steps to create Explicit Cursors
1. Declare the cursor:

• to initialize in the memory.
• It defines the cursor with a name and the associated SELECT statement.

• Syntax:
CURSOR name IS

SELECT statement;
2. Open the cursor
• It is used to allocate memory for the cursor and make it easy to fetch the rows returned by the SQL statements into it.
Syntax for cursor open:

OPEN cursor_name;

Prof. Dileep Kumar Sahu, Assistant Professor

Steps to create Explicit Cursors
3. Fetch the cursor:
• It is used to access one row at a time. You can fetch rows from the above-opened cursor as follows:
Syntax for cursor fetch:

FETCH cursor_name INTO variable_list;
4. Close the cursor:
• It is used to release the allocated memory. The following syntax is used to close the above-opened cursors.
Syntax for cursor close:

Close cursor_name;
Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Cursor: Explicit Cursors - Example
• Explicit cursors are defined by programmers to gain more control over the context area.
• It is defined in the declaration section of the PL/SQL block.
• It is created on a SELECT statement which returns more than one row.

Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Cursor : Explicit Cursor - Example
• PL/SQL Program to retrieve the customer name and address.
DECLARE

c_id customers.id%type;
c_name customers.name%type;
c_addr customers.address%type;
CURSOR c_customers is

SELECT id, name, address FROM customers;
BEGIN

OPEN c_customers;
LOOP

FETCH c_customers into c_id, c_name, c_addr;
EXIT WHEN c_customers%notfound;
dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

END LOOP;
CLOSE c_customers;

END;
/

Prof. Dileep Kumar Sahu, Assistant Professor

Customer
Id Name Address Salary
1 Ramesh Durg 45000
2 Sohan Bhilai 55000
3 Mohan Raipur 45000

Output:
1 Ramesh Durg
2 Sohan Bhilai
3 Mohan Raipur

PL/SQL procedure successfully completed.

PL/SQL Package
• Packages are schema objects that groups logically related PL/SQL types, variables, and subprograms.
• A package will have two mandatory parts −1. Package specification2. Package body or definition
Package Specification
• The specification is the interface to the package.
• It just DECLARES the types, variables, constants, exceptions, cursors, andsubprograms that can be referenced from outside the package.
• It contains all information about the content of the package, but excludes thecode for the subprograms.
• All objects placed in the specification are called public objects.
• Any subprogram not in the package specification but coded in the package bodyis called a private object.

Prof. Dileep Kumar Sahu, Assistant Professor

Creating PL/SQL Package
• The following code shows a package specification having a single procedure.
• We can have many global variables defined and multiple procedures or functions inside a package.

CREATE PACKAGE customer_sal AS
PROCEDURE find_sal(c_id customer.id%type);

END customer_sal
• Output:

Package created.

Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Package Body
• The CREATE PACKAGE BODY Statement is used for creating the package body. The following code shows the package body declaration for the customer_sal package created above.
CREATE OR REPLACE PACKAGE BODY customer_sal AS

PROCEDURE find_sal(c_id customer.id%TYPE) IS
c_sal customer.salary%TYPE;
BEGIN

SELECT salary INTO c_sal
FROM customer WHERE id = c_id;

dbms_output.put_line('Salary: '|| c_sal);
END find_sal;

END customer_sal;
/
• Output:

Package body created.
Prof. Dileep Kumar Sahu, Assistant Professor

Using PL/SQL Package Elements
• The package elements (variables, procedures or functions) are accessed with the following syntax:package_name.element_name;
• The following program uses the find_sal method of the customer_sal package −DECLARE code customer.id%type := &cc_id; BEGIN customer_sal.find_sal(code); END; /• When the above code is executed at the SQL prompt, it prompts to enter the customer ID and when you enter an ID, it displays the corresponding salary as follows −Enter value for cc_id: 1 Salary: 3000 PL/SQL procedure successfully completed. Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Package: Example
• We will use the CUSTOMERS table stored in our database with the following records −
• Select * from customer;

Prof. Dileep Kumar Sahu, Assistant Professor

Customer
Id Name Age Address Salary
1 Ramesh 22 Durg 45000
2 Sohan 21 Bhilai 55000
3 Mohan 25 Raipur 45000

PL/SQL Package: Example

Prof. Dileep Kumar Sahu, Assistant Professor

-----Creating PackageCREATE OR REPLACE PACKAGE cust_package AS -- Add a customer PROCEDURE addCustomer(cid customer.id%type, cname customer.name%type, cage customer.age%type, caddr customer.address%type, csal customer.salary%type);-- Removes a customer PROCEDURE delCustomer(cid customer.id%TYPE);
--Lists all customer

PROCEDURE listCustomer;
END cust_package;
Output:package created

PL/SQL Package: Example

Prof. Dileep Kumar Sahu, Assistant Professor

-----Creating Package BodyCREATE OR REPLACE PACKAGE BODY cust_package AS PROCEDURE addCustomer(cid customer.id%type, cname customer.No.ame%type, cage customer.age%type, caddr customer.address%type, csal customer.salary%type) IS BEGIN INSERT INTO customer (id,name,age,address,salary) VALUES(cid, cname, cage, caddr, csal); END addCustomer;---PROCEDURE delCustomer(cid customer.id%type) IS BEGIN DELETE FROM customer WHERE id = cid; END delCustomer;---

PROCEDURE listCustomer IS CURSOR c_customer is SELECT name FROM customer; TYPE c_list is TABLE OF customer.Name%type; name_list c_list := c_list(); counter integer :=0; BEGIN FOR n IN c_customer LOOP counter := counter +1; name_list.extend; name_list(counter) := n.name; dbms_output.put_line('Customer(' ||counter|| ')'||name_list(counter));END LOOP; END listCustomer; END cust_package; /
Output:package body created

PL/SQL Package: Example

Prof. Dileep Kumar Sahu, Assistant Professor

DECLARE code customer.id%type:= 2;BEGIN cust_package.addcustomer(4, 'Reyansh', 25, ‘Durg', 3500); cust_package.addcustomer(5, ‘Rishi', 32, ‘Raipur', 7500); cust_package.listcustomer; cust_package.delcustomer(code); cust_package.listcustomer; END;/

PL/SQL Package: Example

Prof. Dileep Kumar Sahu, Assistant Professor

PL/SQL Procedure successfully completed

Output:
Customer (1): Ramesh
Customer (2): Sohan
Customer (3): Mohan
Customer (4): Reyansh
Customer (5): Rishi
Customer (1): Ramesh
Customer (3): Mohan
Customer (4): Reyansh
Customer (5): Rishi

Prof. Dileep Kumar Sahu, Assistant Professor

