
Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Multithreading

A multithreaded program contains two or more parts that can run on currently. Each part of such a program
is called a thread, and each thread defines a separate path of execution. Multithreading is a specialized form
of multitasking.

There are two distinct types of multitasking: process-based and thread-based. A process is, in essence, a
program that is executing.

1. process-based multitasking is the feature that allows your computer to run two or more programs
concurrently. For example, process-based multitasking enables you to run the Java compiler at the same
time that you are using a text editor.
2. In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code. This
means that a single program can perform two or more tasks simultaneously. For instance, a text editor can
format text at the same time that it is printing, as long as these two actions are being performed by two
separate threads.

Java Thread Model

Messaging
Java provides a clean, low-cost way for two or more threads to talk to each other, via calls to

predefined methods that all objects have. Java's messaging system allows a thread to enter a synchronized
method on an object, and then wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface
Java's multithreading system is built upon the Thread class, its methods, and its companion interface,
Runnable. To create a new thread, your program will either extend Thread or implement the Runnable
interface.
The Thread class defines several methods that help manage threads. The ones that will be used in this chapter
are shown here:

 Method Meaning

getName()-------- Obtain a thread's name.
getPriority()--------Obtain a thread's priority.
isAlive()----------- Determine if a thread is still running.
join()---------------- Wait for a thread to terminate.

Main Thread

Child Thread

Child Thread

Child Thread

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

run()---------------- Entry point for the thread.
sleep()-------------- Suspend a thread for a period of time.
start()--------------Start a thread by calling its run method.

The Main Thread

 When a Java program starts up, one thread begins running immediately.
 This is usually called the main thread of your program, because it is the one that is executed when

your program begins.

The main thread is important for two reasons:
 It is the thread from which other "child" threads will be spawned.
 It must be the last thread to finish execution. When the main thread stops, your program

terminates.

The main thread is created automatically when your program is started, it can be controlled through a Thread
object. You must obtain a reference to it by calling the method currentThread(), which is a public static
member of Thread. Its general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a reference to the main
thread, you can control it just like any other thread. Let's begin by reviewing the following example:

// Controlling the main Thread.
class CurrentThreadDemo {
public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
t.setName("My Thread");// change the name of the thread
System.out.println("After name change: " + t);
try {
for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted");
}}}

In this program,

 a reference to the current thread (the main thread, in this case) is obtained by calling currentThread(
), and this reference is stored in the local variable t.

 Next, the program displays information about the thread.
 The program then calls setName() to change the internal name of the thread. Information about the

thread is then redisplayed.
 Next, a loop counts down from five, pausing one second between each line.
 The pause is accomplished by the sleep() method. The argument to sleep() specifies the delay period

in milliseconds. Notice the try/catch block around this loop.
 The sleep() method in Thread might throw an InterruptedException. This wouldhappen if some

other thread wanted to interrupt this sleeping one.
This example just prints a message if it gets interrupted. In a real program, you would need to handle this
differently. Here is the output generated by this program:

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread. Java defines
two ways in which this can be accomplished:

1. You can implement the Runnable interface.
2. You can extend the Thread class, itself.

Implementing Runnable:
The easiest way to create a thread is to create a class that implements the Runnable interface.

Runnable abstracts a unit of executable code. You can construct a thread on any object that implements
Runnable. To implement Runnable, a class need only implement a single method called run(), which is
declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to understand
that run() can call other methods, use other classes, and declare variables, just like the main thread can. The
only difference is that run() establishes the entry point for another, concurrent thread of execution within
your program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of type Thread from
within that class. Thread defines several constructors. The one that we will
use is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface. This defines
where execution of the thread will begin. The name of the new thread is specified by threadName. After the
new thread is created, it will not start running until you call its start() method, which is declared within
Thread. In essence, start() executes a call to run(). The start() method is shown here: void start()
Here is an example that creates a new thread and starts it running:

// Create a second thread.
class NewThread implements Runnable {
Thread t;
NewThread() {
// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}}
class ThreadDemo {
public static void main(String args[]) {
new NewThread(); // create a new thread
try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

}
System.out.println("Main thread exiting.");

}
}

Inside NewThread's constructor, a new Thread object is created by the following statement:
t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run() method on
this object. Next, start() is called, which starts the thread of execution beginning at the run() method. This
causes the child thread's for loop to begin. After calling start(), NewThread's constructor returns to main().
When the main thread resumes, it enters its for loop. Both threads continue running, sharing the CPU, until
their loops finish. The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

NOTE: If the main thread finishes before a child thread has completed, then the Java run-time system may
"hang."

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to create an

instance of that class. The extending class must override the run() method, which is the entry point for the
new thread. It must also call start() to begin execution of the new thread. Here is the preceding program
rewritten to extend Thread:

// Create a second thread by extending Thread
class NewThread extends Thread {
NewThread() {
// Create a new, second thread
super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread
}
// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");
}}
class ExtendThread {
public static void main(String args[]) {
new NewThread(); // create a new thread
try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");
}}

This program generates the same output as the preceding version. As you can see, the child thread is

created by instantiating an object of NewThread, which is derived from Thread. Notice the call to super()
inside NewThread. This invokes the following form of the Thread constructor:

public Thread(String threadName)

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Here, threadName specifies the name of the thread.

Creating Multiple Threads:

You have been using only two threads: the main thread and one child thread. However, your program can
spawn as many threads as it needs. For example, the following program creates three child threads:

// Create multiple threads.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);
}} catch (InterruptedException e) {
System.out.println(name + "Interrupted");

}
System.out.println(name + " exiting.");
}}
class MultiThreadDemo {
public static void main(String args[]) {
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");
try {
// wait for other threads to end
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");
}
System.out.println("Main thread exiting.");
}
}

The output from this program is shown here:
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

Where, once started, all three child threads share the CPU. Notice the call to sleep(10000) in main(). This
causes the main thread to sleep for ten seconds and ensures that it will finish last.

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Using isAlive() and join()

Que:How can one thread know when another thread has ended?
Thread provides a means by which you can answer this question. Two ways exist to determine whether a
thread has finished.

1. You can call isAlive() on the thread. This method is defined by Thread, and its general form is shown
here:

final boolean isAlive()
The isAlive() method returns true if the thread upon which it is called is still running. It returns false
otherwise.

2. While isAlive() is occasionally useful, the method that you will more commonly use to wait for a
thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the concept of the
calling thread waiting until the specified thread joins it.

Additional forms of join() allow you to specify a maximum amount of time that you want to wait for the
specified thread to terminate. Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);
}} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}
System.out.println(name + " exiting.");
}}
class DemoJoin {
public static void main(String args[]) {
NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: "
+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "
+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "
+ ob3.t.isAlive());
// wait for threads to finish
try {
System.out.println("Waiting for threads to
finish.");
ob1.t.join();
ob2.t.join();
ob3.t.join();
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");
}
System.out.println("Thread One is alive: "
+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "
+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "
+ ob3.t.isAlive());
System.out.println("Main thread exiting.");
}
}

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Sample output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3

Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1
Two exiting.
Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

where, after the calls to join() return, the threads have stopped executing.

Thread Priorities:

“Thread priorities are used by the thread scheduler to decide when each thread should be allowed to run. “
 In theory, higher-priority threads get more CPU time than lower-priority threads.
 In practice, the amount of CPU time that a thread gets often depends on several factors besides its

priority.
 A higher-priority thread can also preempt a lower-priority one. For instance, when a lower-priority thread

is running and a higher-priority thread resumes (from sleeping or waiting on I/O, for example), it will
preempt the lower-priority thread.

For safety, threads that share the same priority should yield control once in a while. This ensures that all
threads have a chance to run under a nonpreemptive operating system.

 To set a thread's priority, use the setPriority() method, which is a member of Thread. This is its
general form:

final void setPriority(int level)
Here, level specifies the new priority setting for the calling thread. The value of level must be within the range
MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively.

To return a thread to default priority, specify NORM_PRIORITY, which is currently 5. These priorities are
defined as final variables within Thread. You can obtain the current priority setting by calling the getPriority()
method of Thread, shown here:

final int getPriority()

The following example demonstrates two threads at different priorities, which do not run on a preemptive
platform in the same way as they run on a non-preemptive platform. One thread is set two levels above the
normal priority, as defined by Thread.NORM_PRIORITY, and the other is set to two levels below it.

 The threads are started and allowed to run for ten seconds. Each thread executes a loop, counting
the number of iterations. After ten seconds, the main thread stops both threads. The number of times that
each thread made it through the loop is then displayed.

// Demonstrate thread priorities.
class clicker implements Runnable {
int click = 0;
Thread t;

private volatile boolean running = true;
public clicker(int p) {
t = new Thread(this);
t.setPriority(p);
}

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

public void run() {
while (running) {
click++;
}
}
public void stop() {
running = false;
}
public void start() {
t.start();
}}
class HiLoPri {
public static void main(String args[]) {
Thread.currentThread().setPriority(Thread.MAX_PRIORITY);
clicker hi = new clicker(Thread.NORM_PRIORITY + 2);
clicker lo = new clicker(Thread.NORM_PRIORITY - 2);
lo.start();
hi.start();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
lo.stop();
hi.stop();
// Wait for child threads to terminate.
try {
hi.t.join();
lo.t.join();
} catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
System.out.println("Low-priority thread: " + lo.click);
System.out.println("High-priority thread: " + hi.click);
}}

Unit-3: Multithreading

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

The output of this program, shown as follows when run under Windows 98, indicates that the threads did context
switch, even though neither voluntarily yielded the CPU nor blocked for I/O. The higher-priority thread got
approximately 90 percent of the CPU time.
Low-priority thread: 4408112
High-priority thread: 589626904

