
Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Exception

 A Java exception is an object that describes an exceptional (that is, error) condition that has
occurred in a piece of code.

 When an exceptional condition arises, an object representing that exception is created and
thrown in the method that caused the error.

 That method may choose to handle the exception itself, or pass it on. Either way, at some point,
the exception is caught and processed.

 Exceptions can be generated by the Java run-time system, or they can be manually generated by
your code.

 Java exception handling is managed via five keywords: try, catch, throw, throws, and
 finally.

Exception Types:

1. Checked exception: The Java compiler is able to check the exceptions at compile time, these are
called checked exceptions. E.g. java.io.IOException .

2. Unchecked exception: These are also called RuntimeExceptions, Java compiler is not able to
check these exceptions. E. g. Divide by zero exceptions and ArrayIndexOutOfBoundsException.

All exception types are subclasses of the built-in class Throwable. Below Throwable are two subclasses
that partition exceptions into two distinct branches.

1. Exception:
 This class is used for exceptional conditions that user programs should catch.
 This is also the class that you will subclass to create your own custom exception types.
 There is an important subclass of Exception, called RuntimeException. Exceptions of this type

are automatically defined for the programs that you write and include things such as division by
zero and invalid array indexing.

2. Error:
 which defines exceptions that are not expected to be caught under normal circumstances by your

program.
 Exceptions of type Error are used by the Java run-time system to indicate errors having to do

with the run-time environment, itself. Stack overflow is an example of such an error.

Uncaught Exceptions:

 This small program includes an expression that intentionally causes a divide-by-zero error.
class Exc {
public static void main(String args[]) {
int d = 0;
int a = 42 / d;
}}
 When the Java run-time system detects the attempt to divide by zero, it constructs a new

exception object and then throws this exception.
 This causes the execution of Exc to stop, because once an exception has been thrown, it must be

caught by an exception handler and dealt with immediately.
 In this example, we haven't supplied any exception handlers of our own, so the exception is

caught by the default handler provided by the Java run-time system.

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

 Any exception that is not caught by your program will ultimately be processed by the default
handler. The default handler displays a string describing the exception, prints a stack trace from
the point at which the exception occurred, and terminates the program.

Here is the output generated when this example is executed by the standard Java JDK run-time
interpreter:
java.lang.ArithmeticException: / by zero
at Exc.main(Exc.java:4)

Notice how the class name, Exc; the method name, main; the filename, Exc.java; and the line number, 4,
are all included in the simple stack trace. Also, notice that the type of the exception thrown is a subclass
of Exception called ArithmeticException, which more specifically describes what type of error
happened.

Exception handling Mechanisms:

Java provides following Exception handling mechanisms:
1. try…..catch.
2. throws clause.
3. finally.
4. throw clause

try…catch:

 Program statements that you want to monitor for exceptions are contained within a try
block.

 If an exception occurs within the try block, it is thrown. Your code can catch this
exception (using catch) and handle it in some rational manner.

 To guard against and handle a run-time error, simply enclose the code that you want to
monitor inside a try block.

 Immediately following the try block, include a catch clause that specifies the exception
type that you wish to catch.

try{
///stmts which can throw
//exceptions
}

Catch(Exception exc){
///catch block handle the
//exceptions
}

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

General form of Exception handling block:

try {
// block of code to monitor for errors
}
catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1
}
catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2
}
// ...
finally {
// block of code to be executed before try block ends
}

To illustrate how easily this can be done, the following program includes a try block and a catch clause
which processes the ArithmeticException generated by the division-by-zero error:

class Exc2 {
public static void main(String args[]) {
int d, a;
try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");
} catch (ArithmeticException e) { // catch divide-by-zeroerror
System.out.println("Division by zero.");}
System.out.println("After catch statement.");}}

This program generates the following output:
Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception is
thrown, program control transfers out of the try block into the catch block. Put differently, catch is not
"called," so execution never "returns" to the try block from a catch. Thus, the line "This will not be
printed." is not displayed.

Displaying a Description of an Exception:

 Throwable overrides the toString() method (defined by Object) so that it returns a string containing

a description of the exception.
 You can display this description in a println() statement by simply passing the exception as an

argument.
 For example, the catch block in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue
}

When this version is substituted in the program, and the program is run under the standard Java JDK
interpreter, each divide-by-zero error displays the following message:

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Exception: java.lang.ArithmeticException: / by zero

2. Multiple catch Clauses:

 While more than one exception could be raised by a single piece of code. To handle this type of

situation, you can specify two or more catch clauses, each catching a different type of exception.
 When an exception is thrown, each catch statement is inspected in order, and the first one whose type

matches that of the exception is executed. After one catch statement executes, the others are
bypassed, and execution continues after the try/catch block.

 The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {
public static void main(String args[]) {
try {
int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;
} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);
}
System.out.println("After try/catch blocks.");
}}

This program will cause a division-by-zero exception if it is started with no command-line
parameters, since a will equal zero. It will survive the division if you provide a commandline argument,
setting a to something larger than zero.

 But it will cause an ArrayIndexOutOfBoundsException, since the int array c has a length of 1,
yet the program attempts to assign a value to c[42].
Here is the output generated by running it both ways:
C:\\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.
C:\\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException: 42
After try/catch blocks.

3. Nested try Statements:

1. The try statement can be nested. That is, a try statement can be inside the block of another try.
2. Each time a try statement is entered, the context of that exception is pushed on the stack.
3. If an inner try statement does not have a catch handler for a particular exception, the stack is unwound

and the next try statement's catch handlers are inspected for a match.

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

4. This continues until one of the catch statements succeeds, or until all of the nested try statements are
exhausted.

5. If no catch statement matches, then the Java run-time system will handle the exception.

4. throw cluase:
System-generated exceptions are automatically thrown by the Java runtime system. To manually

throw an exception, use the keyword throw The general form of throw is shown here:
throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.
Simple types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot
be used as exceptions.

There are two ways you can obtain a Throwable object:
 using a parameter into a catch clause,
 or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent statements
are not executed. Here is a sample program that creates and throws an exception. The handler that catches
the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc() {
try {
throw new NullPointerException("demo");
} catch(NullPointerException e) {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception
}

}
public static void main(String args[]) {
try {
demoproc();
} catch(NullPointerException e) {
System.out.println("Recaught: " + e);
}
}}

This program gets two chances to deal with the same error. First, main() sets up an exception
context and then calls demoproc(). The demoproc() method then sets up another exception-handling
context and immediately throws a new instance of NullPointerException, which is caught on the next
line. The exception is then rethrown. Here is the resulting output:
Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

 throws cluase:

 A throws clause lists the types of exceptions that a method might throw.
 This is necessary for all exceptions, except those of type Error or RuntimeException, or any of

their subclasses.
 All other exceptions that a method can throw must be declared in the throws clause. If they are

not, a compile-time error will result.
This is the general form of a method declaration that includes a throws clause:
type method-name(parameter-list) throws exception-list
{
// body of method
}
Here, exception-list is a comma-separated list of the exceptions that a method can throw.
The corrected example is shown here:

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

class ThrowsDemo {
static void throwOne() throws IllegalAccessException
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[]) {
try {
throwOne();
} catch (IllegalAccessException e) {
System.out.println("Caught " + e);
}}}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

finally:

 finally creates a block of code that will be executed after a try/catch block has completed and
before the code following the try/catch block.

 The finally block will execute whether or not an exception is thrown. If an exception is thrown,
the finally block will execute even if no catch statement matches the exception.

 Any time a method is about to return to the caller from inside a try/catch block, via an uncaught
exception or an explicit return statement, the finally clause is also executed just before the
method returns.

 This can be useful for closing file handles and freeing up any other resources that might have

been allocated at the beginning of a method with the intent of disposing of them before returning.

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

 The finally clause is optional. However, each try statement requires at least one catch or a
finally clause.

class FinallyDemo {
// Through an exception out of the method.
static void procA() {
try {
System.out.println("inside procA");
throw new RuntimeException("demo");
} finally {
System.out.println("procA's finally");
}}
// Return from within a try block.
static void procB() {
try {
System.out.println("inside procB");
return;
} finally {

System.out.println("procB's finally");

}}
// Execute a try block normally.
static void procC() {
try {
System.out.println("inside procC");
} finally {
System.out.println("procC's finally");
}}
public static void main(String args[]) {
try {
procA();
} catch (Exception e) {
System.out.println("Exception caught");
}
procB();
procC();
}}

In this example, procA() prematurely breaks out of the try by throwing an exception. The finally clause
is executed on the way out. procB()'s try statement is exited via a return statement.

The finally clause is executed before procB() returns. In procC(), the try statement executes
normally, without error. However, the finally block is still executed.
Note If a finally block is associated with a try, the finally block will be executed
upon conclusion of the try.

Exception Classes:

Exceptions in Java are objects. All exceptions are derived from the java.lang. Throwable class. Figure
shows a partial hierarchy of classes derived from the Throwable class. The two main subclasses
Exception and Error constitute the main categories of throwables, the term used to refer to both
exceptions and errors. Figure also shows that not all exception classes are found in the same package.

The Throwable class provides a String variable that can be set by the subclasses to provide a detail
message. The purpose of the detail message is to provide more information about the actual exception. All
classes of throwables define a one-parameter constructor that takes a string as the detail message.

The Exception class does not define any methods of its own. It does, of course, inherit those methods
provided by Throwable. Thus, all exceptions, including those that you create, have the methods defined
by Throwable available to them You may also wish to override one or more of these methods in
exception classes that you create. Some methods are shown below:

1. String getMessage () ---Returns a description of the exception.
2. void printStackTrace() --- Displays the stack trace.
3. String toString () --- Returns a String object containing a description of the exception. This

method is called by println() when outputting a Throwable object.

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Figure: Partial Exception Inheritance Hierarchy

 Java defines several exception classes. The most general of these exceptions are subclasses of the

standard type RuntimeException.
 Since java.lang is implicitly imported into all Java programs, most exceptions derived from

RuntimeException are automatically available.
 They need not be included in any method's throws list. In the language of Java, these are called

unchecked exceptions because the compiler does not check to see if a method handles or throws
these exceptions.

 Those exceptions defined by java.lang that must be included in a method's throws list if that
method can generate one of these exceptions and does not handle it itself. These are called
checked exceptions.

 Java defines several other types of exceptions that relate to its various class libraries.

Creating own Exception subclasses:

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

The following example declares a new subclass of Exception and then uses that subclass to signal an
error condition in a method. It overrides the toString() method, allowing the description of the exception
to be displayed using println().

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;
MyException(int a) {
detail = a;
}
public String toString() {
return "MyException[" + detail + "]";
}
}
class ExceptionDemo {
static void getAge(int a) throws MyException {
System.out.println("Called getAge(" + a + ")");

if(a > 10)
throw new MyException(a);
System.out.println("Normal exit");
}
public static void main(String args[]) {
try {
getAge(1);
getAge(20);
} catch (MyException e) {
System.out.println("Caught " + e);
}}
}

Using Exceptions
1. Exception handling provides a powerful mechanism for controlling complex programs that have

many dynamic run-time characteristics.
2. It is important to think of try, throw, and catch as clean ways to handle errors and unusual

boundary conditions in your program's logic.

Chained Exceptions

The chained exception feature allows you to associate another exception with an exception. This second
exception describes the cause of the first exception.

For example, imagine a situation in which a method throws an ArithmeticException because of an
attempt to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw an
ArithmeticException, since that is the error that occurred, you might also want to let the calling code
know that the underlying cause was an I/O error.

To allow chained exceptions, Java 2, version 1.4 added two constructors and two methods to Throwable.
The constructors are shown here.

1. Throwable(Throwable causeExc): --causeExc is the exception that causes the current
exception. That is, causeExc is the underlying reason that an exception occurred.

2. Throwable(String msg, Throwable causeExc):--- allows you to specify a description at the

same time that you specify a cause exception. These two constructors have also been added to the
Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause(). These methods
are shown above.

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

 Throwable getCause() :-- The getCause() method returns the exception that underlies the
current exception. If there is no underlying exception, null is returned. Added by Java 2, version
1.4.

 Throwable initCause(Throwable causeExc): --The initCause() method associates causeExc
with the invoking exception and returns a reference to the exception. Thus, you can associate a
cause with an exception after the exception has been created. Added by Java 2, version 1.4.

However, the cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you can’t set it again
using initCause(). In general, initCause() is used to set a cause for legacy exception classes.

Example: // Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {
// create an exception
NullPointerException e =
new NullPointerException("top layer");
// add a cause
e.initCause(new ArithmeticException("cause"));
throw e;
}
public static void main(String args[]) {
try {
demoproc();
} catch(NullPointerException e) {
// display top level exception
System.out.println("Caught: " + e);
// display cause exception
System.out.println("Original cause: " +
e.getCause());
}
}}

Unit-3: Exceptions Handling

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

The output from the program is shown here.
Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

Where,
 The top-level exception is NullPointerException. To it is added a cause exception,

ArithmeticException. When the exception is thrown out of demoproc(), it is caught by
main().

 There, the top-level exception is displayed, followed by the underlying exception, which is
obtained by calling getCause().

Note:
1. Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause

exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

2. Chained exceptions are not something that every program will need. However, in cases in
which knowledge of an underlying cause is useful, they offer an elegant solution.

Advantages of using Exception Handling

 Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics.

 It is important to think of try, throw, and catch as clean ways to handle errors and unusual
boundary conditions in your program’s logic.

 When a method can fail, have it throw an exception. This is a cleaner way to handle failure
modes.

