
Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Inheritance

 Inheritance is one of the cornerstones of object-oriented programming because it allows the creation
of hierarchical classifications.
 Using inheritance, you can create a general class, this class can then be inherited by other, more
specific classes, each adding those things that are unique to it. In the terminology of Java, a class that is
inherited is called a superclass. The class that does the inheriting is called a subclass. Therefore, a subclass is
a specialized version of a superclass. It inherits all of the instance variables and methods defined by the
superclass and add its own, unique elements.
The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class
}

Example:
public class Base{
 int i=10;
 public void show (){
 System.out.println (" In the show() ");
 }
 }
public class Derived extends Base{
 int j=34;
 public void display(){
 System.out.println (" In the display() ");

 public static void main(String args[]){
 Derived d1=new Derived();
 d1.show();
 d1.display();
 }
 }

Note:

1. Whenever we create an object of the sub class, with the help of constructor, internally java will call
the constructor of the super class & holds the reference object of the super class in “super” keyword.
 2. Whenever we call a method or access a variable using of subclass, Java will check whether this
method or variable is defined in the sub class or not. In case, if it is not available, Java will check for them in
the super class. If the super class is also not having them, it will try to find them in it’s super class & so on.

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type signature as a method
in its superclass, then the method in the subclass is said to override the method in the superclass.

The key benefit of overriding is the ability to define behavior that's specific to a particular subclass type.
When an overridden method is called from within a subclass, it will always refer to the version of that method
defined by the subclass. The version of the method defined by the superclass will be hidden. Consider the
following:

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);
}}
class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;
}
// Display k – this overrides show() in A
void show() {
System.out.println("k: " + k);
}}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B
}}

When show() is invoked on an object of type B, the version of show() defined within B is used. That is, the
versio n of show() inside B overrides the version declared in A. If you wish to access the superclass version
of an overridden function, you can do so by using super.

The rules for overriding a method are as follows:

1. The argument list must exactly match that of the overridden method. If they don't match, you can end up
with an overloaded method you didn't intend.

2. The return type must be the same as, or a subtype of, the return type declared in the original overridden
method in the superclass. (More on this in a few pages when we discuss covariant returns.).

3. The access level can't be more restrictive than the overridden method's. The access level CAN be less
restrictive than that of the overridden method.

4. Instance methods can be overridden only if they are inherited by the subclass.
5. A subclass within the same package as the instance's superclass can override any superclass method that is

not marked private or final. A subclass in a different package can override only those non-final
methods marked public or protected.

6. Method overriding occurs only when the names and the type signatures of the two methods are
identical.

7. The overriding method CAN throw any unchecked (runtime) exception, regardless of whether the
overridden method declares the exception.

8. The overriding method must NOT throw checked exceptions that are new or broader than those declared
by the overridden method. For example, a method that declares a FileNotFoundException cannot be
overridden by a method that declares a SQLException, Exception, or any other non-runtime exception
unless it's a subclass of FileNotFoundException.

super Keyword

Whenever a subclass needs to refer to its immediate superclass, it can do so by use of the keyword super.
super has two general forms.

1. The first calls the superclass' constructor.
2. The second is used to access a member of the superclass that has been hidden by a member of a

subclass. Each use is examined here.
1. Using super to Call Superclass Constructors
A subclass can call a constructor method defined by its superclass by use of the following form of super:

super(parameter-list);

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Here, parameter-list specifies any parameters needed by the constructor in the superclass. super() must
always be the first statement executed inside a subclass' constructor. To see how super() is used, consider this
improved version of the BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {

double weight;
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor
weight = m;
}

}

Here, BoxWeight() calls super() with the parameters w, h, and d. This causes the Box() constructor to be
called, which initializes width, height, and depth using these values. BoxWeight no longer initializes these
values itself. It only needs to initialize the value unique to it: weight. This leaves Box free to make these
values private if desired.

In the preceding example, super() was called with three arguments. Since constructors can be
overloaded, super() can be called using any form defined by the superclass. The constructor executed will be
the one that matches the arguments.

2. A Second Use for super:

The second form of super acts somewhat like this, except that it always refers to the superclass of the
subclass in which it is used. This usage has the following general form:

 super.member ;
Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a subclass hide
members by the same name in the superclass.
// Using super to overcome name hiding.

class A {
int i;
}
// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A
B(int a, int b) {
super.i = a; // i in A
i = b; // i in B
}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);
}}
class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2);
subOb.show();
}
}

This program displays the following:
i in superclass: 1
i in subclass: 2
Note: The overriding method cannot have a more restrictive access modifier than the method being overridden
(for example, you can't override a method marked public and make it protected).

Dynamic Method Dispatch

 Dynamic method dispatch is the mechanism by which a call to an overridden function is resolved
at run time, rather than compile time. Dynamic method dispatch is important because this is how Java
implements run-time polymorphism.

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

 A superclass reference variable can refer to a subclass object. Java uses this fact to resolve calls to
overridden methods at run time. Here is how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the type of the object being
referred to at the time the call occurs. Thus, this determination is made at run time. When different types of
objects are referred to, different versions of an overridden method will be called

 If a superclass contains a method that is overridden by a subclass, then when different types of
objects are referred to through a superclass reference variable, different versions of the method are executed.
Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch

class A {
void callme() {
System.out.println("Inside A's callme
method");
}}
class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme
method");
}}
class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme
method");

}}
class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A
r = a; // r refers to an A object
r.callme(); // calls A's version of callme
r = b; // r refers to a B object
r.callme(); // calls B's version of callme
r = c; // r refers to a C object
r.callme(); // calls C's version of callme
}}

The output from the program is shown here:
Inside A's callme method
Inside B's callme method
Inside C's callme method
This program creates one superclass called A and two subclasses of it, called B and C. Subclasses B and C
override callme() declared in A. Inside the main() method, objects of type A, B, and C are declared. Also, a
reference of type A, called r, is declared. The program then assigns a reference to each type of object to r and
uses that reference to invoke callme(). As the output shows, the version of callme() executed is determined
by the type of object being referred to at the time of the call. Had it been determined by the type of the
reference variable, r, you would see three calls to A's callme() method.

Abstract class

There are situations in which you will want to define a superclass that declares the structure of a given
abstraction without providing a complete implementation of every method.

 That is, sometimes you will want to create a superclass that only defines a generalized form that will be
shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class determines the
nature of the methods that the subclasses must implement.

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

One way this situation can occur is when a superclass is unable to create a meaningful implementation for a
method.

You can require that certain methods be overridden by subclasses by specifying the abstract type modifier.
These methods are sometimes referred to as subclasser responsibility because they have no implementation
specified in the superclass. Thus, a subclass must override them—it cannot simply use the version defined in
the superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

1. Where, no method body is present.
2. Any class that contains one or more abstract methods must also be declared abstract.
3. To declare a class abstract, you simply use the abstract keyword in front of the class keyword at the

beginning of the class declaration.
4. There can be no objects of an abstract class. That is, an abstract class cannot be directly instantiated

with the new operator.
5. Abstract class can have constructor, but it can called only through the non-abstract child class instace.

Example:

Using final Keyword

The keyword final has three uses.
1. It can be used to create the equivalent of a named constant.
2. To Prevent Overriding i.e.disallow a method from being overridden, specify final as a modifier at

the start of its declaration. Methods declared as final cannot be overridden.

The following fragment illustrates final:

abstract class AbsDemo{
abstract int square(int);
}
Class Abs extends AbsDemo{
Int square(int i)
{return i*I;}
Public static void main(String args[])
{
Abs ob=new Abs();
System.out.println(“Square of 5=”+square(5));
}
}

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

class A {
final void meth() {
System.out.println("This is a final method.");
}}
class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");
}}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a compile-
time error will result.

3. While you will want to prevent a class from being inherited. To do this, precede the class
declaration with final. Declaring a class as final implicitly declares all of its methods as final, too.
Here is an example of a final class:
final class A {
// ...
}
// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
// ...
}
As the comments imply, it is illegal for B to inherit A since A is declared as final.

Packages

A package is a namespace for organizing classes and interfaces in a logical manner. Placing
your code into packages makes large software projects easier to manage.

Java provides a mechanism for partitioning the class name space into more manageable chunks. This

mechanism is the package. The package is both a naming and a visibility control mechanism. You can define
classes inside a package that are not accessible by code outside that package. You can also define class
members that are only exposed to other members of the same package.

Defining a Package:

To create a package is quite easy: simply include a package command as the first statement in a Java
source file. Any classes declared within that file will belong to the specified package. The package statement
defines a name space in which classes are stored. If you omit the package statement, the class names are put
into the default package, which has no name.
This is the general form of the package statement:

package pkg;
Here, pkg is the name of the package. For example, the following statement creates a package called

MyPackage.
package MyPackage;

NOTE:
 Java uses file system directories to store packages. For example, the .class files for any classes you

declare to be part of MyPackage must be stored in a directory called MyPackage. Remember that
case is significant, and the directory name must match the package name exactly.

 You can create a hierarchy of packages. To do so, simply separate each package name from the one
above it by use of a period. The general form of a multileveled package statement is shown here:

package pkg1[.pkg2[.pkg3]];
 A package hierarchy must be reflected in the file system of your Java development system. For

example, a package declared as

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

package java.awt.image;
 Be sure to choose your package names carefully. You cannot rename a package without renaming the

directory in which the classes are stored. Be sure to choose your package names carefully. You cannot
rename a package without renaming the directory in which the classes are stored.

Understanding CLASSPATH

 While packages solve many problems from an access control and name-space-collision perspective,
they cause some curious difficulties when you compile and run programs. This is because the specific
location that the Java compiler will consider as the root of any package hierarchy is controlled by
CLASSPATH.

 Until now, you have been storing all of your classes in the same, unnamed default package. Doing so
allowed you to simply compile the source code and run the Java interpreter on the result by naming
the class on the command line. This worked because the default current working directory (.) is
usually in the CLASSPATH environmental variable defined for the Java run-time system, by default.

 Assume that you create a class called PackTest in a package called test. We create a directory called
test and put PackTest.java inside that directory. You then make test the current directory and
compile PackTest.java. This results in PackTest.class being stored in the test directory, as it should
be.

 When you try to run PackTest, though, the Java interpreter reports an error message similar to "can't
find class PackTest." This is because the class is now stored in a package called test. You can no
longer refer to it simply as PackTest. You must refer to the class by enumerating its package
hierarchy, separating the packages with dots. This class must now be called test.PackTest.

 However, if you try to use test.PackTest, you will still receive an error message similar to "can't find
class test/PackTest.".

 The reason you still receive an error message is hidden in your CLASSPATH variable. Remember,
CLASSPATH sets the top of the class hierarchy. The problem is that there's no test directory in the
current working directory, because you are in the test directory, itself.

 You have two choices at this point: change directories up one level and try java test.PackTest, or add
the top of your development class hierarchy to the CLASSPATH environmental variable. Then you
will be able to use java test.PackTest from any directory, and Java will find the right .class file. For
example, if you are working on your source code in a directory called C:\\myjava, then set your
CLASSPATH to .;C:\\myjava;C:\\java\\classes

 Call this file AccountBalance.java, and put it in a directory called MyPack. Next, compile the file.

Make sure that the resulting .class file is also in the MyPack directory. Then try executing the
AccountBalance class, using the following command line:
java MyPack.AccountBalance

 Remember, you will need to be in the directory above MyPack when you execute this command, or
to have your CLASSPATH environmental variable set appropriately.

 As explained, AccountBalance is now part of the package MyPack. This means that it cannot be
executed by itself. That is, you cannot use this command line:

java AccountBalance

 AccountBalance must be qualified with its package name.

Access Protection:

Classes and packages are both means of encapsulating and containing the name space and scope of
variables and methods. Packages act as containers for classes and other subordinate packages. Classes act as
containers for data and code. The class is Java's smallest unit of abstraction. Because of the interplay between
classes and packages,

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Java addresses four categories of visibility for class members:
 Subclasses in the same package
 Non-subclasses in the same package
 Subclasses in different packages
 Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways to produce the many
levels of access required by these categories.
Table 9-1. Class Member Access

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package No Yes Yes Yes
Subclass

Same package No Yes Yes Yes
Non subclass

Different package No No Yes Yes
Sub class

Different package No No No Yes
non- subclass

Importing Packages

Java includes the import statement to bring certain classes, or entire packages, into visibility. In a
Java source file, import statements occur immediately following the package statement (if it exists) and
before any class definitions. This is the general form of the import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate package inside

the outer package separated by a dot (.). There is no practical limit on the depth of a package hierarchy, except
that imposed by the file system.
 you specify either an explicit classname or a star (*), which indicates that the Java compiler should
import the entire package. This code fragment shows both forms in use:
import java.util.Date;
import java.io.*;

Caution: The star form may increase compilation time—especially if you import several large packages.

Example:

package MyPack;
public class Balance {
String name;
double bal;

public Balance(String n, double b) {
name = n;
bal = b;
}

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

public void show() {
if(bal<0)
System.out.print("--> ");
System.out.println(name + ": $" + bal);
}
}
import MyPack.*;
class TestBalance {

public static void main(String args[]) {
/* Because Balance is public, you may use
Balance
class and call its constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);
test.show(); // you may also call show()
}
}

Interfaces

 Using the keyword interface, you can fully abstract a class' interface from its implementation.
 Interfaces are syntactically similar to classes, but they lack instance variables, and their methods are

declared without any body.
 Once it is defined, any number of classes can implement an interface. Also, one class can implement

any number of interfaces.
 To implement an interface, a class must create the complete set of methods defined by the interface.
 By providing the interface keyword, Java allows you to fully utilize the "one interface, multiple

methods" aspect of polymorphism.
 Interfaces are designed to support dynamic method resolution at run time.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface_name {

return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;
}

 access is either public or not used. When no access specifier is included, then default access results,

and the interface is only available to other members of the package in which it is declared.
 When it is declared as public, the interface can be used by any other code.
 name is the name of the interface, and can be any valid identifier.
 Notice that the methods which are declared have no bodies. They end with a semicolon after the

parameter list. They are, essentially, abstract methods; there can be no default implementation of any
method specified within an interface.

 Each class that includes an interface must implement all of the methods.
Example: interface Callback {

void callback(int param);
}

Implementing Interfaces:
To implement an interface, include the implements clause in a class definition, and then create the

methods defined by the interface. The general form of a class that includes the implements clause looks like
this:
access class classname [extends superclass] [implements interface [,interface...]]
 {

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

// class-body
}

 access is either public or not used.
 If a class implements more than one interface, the interfaces are separated with a omma.
 If a class implements two interfaces that declare the same method, then the same method will

be used by clients of either interface.
 The methods that implement an interface must be declared public. .

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {
// Implement Callback's interface
public void callback(int p) {
System.out.println("callback called with " + p);
}}

Notice that callback () is declared using the public access specifier.
Variables in Interfaces:

 You can use interfaces to import shared constants into multiple classes by simply declaring an
interface that contains variables which are initialized to the desired values.

 When you include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. This is similar tousing a header file in C/C++ to create a
large number of #defined constants or const declarations.

 If an interface contains no methods, then any class that includes such an interface doesn’t actually
implement anything.

 It is as if that class were importing the constant variables into the class name space as final variables.

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as for inheriting
classes. When a class implements an interface that inherits another interface, it must provide implementations
for all methods defined within the interface inheritance chain. Following is an example:

// One interface can extend another.
interface A {
void meth1();
void meth2();
}
// B now includes meth1() and meth2() -- it adds
meth3().
interface B extends A {
void meth3();
}
// This class must implement all of A and B
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {
System.out.println("Implement meth2().");
}
public void meth3() {
System.out.println("Implement meth3().");
}}
class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();
ob.meth1();
ob.meth2();
ob.meth3();
}}

Introducing Nested and Inner Classes

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

It is possible to define a class within another class; such classes are known as nested classes.
 The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is defined

within class A, then B is known to A, but not outside of A.
 A nested class has access to the members, including private members, of the class in which it is

nested.
 However, the enclosing class does not have access to the members of the nested class.

There are two types of nested classes: static and non-static.

1. Static: A static nested class is one which has the static modifier applied. Because it is static, it must
access the members of its enclosing class through an object. That is, it cannot refer to members of its
enclosing class directly. Because of this restriction, static nested classes are seldom used.

2. Non-static: it is categorized in three types
1. Inner class
2. Local Inner class
3. Anonymous

3. The most important type of nested class is the inner class. An inner class is a non-static nested class. It
has access to all of the variables and methods of its outer class and may refer to them directly in the
same way that other non-static members of the outer class do. Thus, an inner class is fully within the
scope of its enclosing class.

The following program illustrates how to define and use an inner class. The class named Outer has one
instance variable named outer_x, one instance method named test(), and defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
int outer_x = 100;
void test() {
Inner inner = new Inner();
inner.display();
}
// this is an inner class
class Inner {
void display() {

System.out.println("display: outer_x = " +
outer_x);
}}
}
class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();
}}

Output from this application is shown here:
display: outer_x = 100
In the program,

 an inner class named Inner is defined within the scope of class Outer. Therefore, any code in class
Inner can directly access the variable outer_x.

 An instance method named display() is defined inside Inner. This method displays outer_x on the
standard output stream.

 The main() method of InnerClassDemo creates an instance of class Outer and invokes its test()
method. That method creates an instance of class Inner and the display() method is called.

It is important to realize that class Inner is known only within the scope of class Outer. The Java compiler
generates an error message if any code outside of class Outer attempts to instantiate class Inner.

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Generalizing, a nested class is no different than any other program element: it is known only within its
enclosing scope.

As explained, an inner class has access to all of the members of its enclosing class, but the reverse is not true.
Members of the inner class are known only within the scope of the inner class and may not be used by the
outer class. For example,

// This program will not compile.
class Outer {
int outer_x = 100;
void test() {
Inner inner = new Inner();
inner.display();
}
// this is an inner class
class Inner {
int y = 10; // y is local to Inner
void display() {

System.out.println("display: outer_x = " +
outer_x);
}}
void showy() {
System.out.println(y); // error, y not known here!
}}
class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();
}}

Here, y is declared as an instance variable of Inner. Thus it is not known outside of that class and it cannot be
used by showy(). Although we have been focusing on nested classes declared within an outer class scope, it is
possible to define inner classes within any block scope.
For example, you can define a nested class within the block defined by a method or even within the body of a
for loop, as this next program shows.

// Define an inner class within a for loop.
class Outer {
int outer_x = 100;
void test() {
for(int i=0; i<10; i++) {
class Inner {
void display() {
System.out.println("display: outer_x = " +
outer_x);
}
}

Inner inner = new Inner();
inner.display();
}}
}
class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();
}
}

anonymous inner classes, which are inner classes that don't have a name.
One final point: Nested classes were not allowed by the original 1.0 specification for Java. They were added
by Java 1.1.

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

Understanding static

There will be times when you will want to define a class member that will be used independently of
any object of that class. It is possible to create a member that can be used by itself, without reference to a
specific instance. To create such a member, precede its declaration with the keyword static.

 When a member is declared static, it can be accessed before any objects of its class are created, and
without reference to any object.

 You can declare both methods and variables to be static. The most common example of a static
member is main(). main() is declared as static because it must be called before any objects exist.

 Instance variables declared as static are, essentially, global variables.
 When objects of its class are declared, no copy of a static variable is made. Instead, all instances of

the class share the same static variable.

Methods declared as static have several restrictions:

1. They can only call other static methods.
2. They must only access static data.
3. They cannot refer to this or super in any way.

If you need to do computation in order to initialize your static variables, you can declare a static

block which gets executed exactly once, when the class is first loaded. The following example shows a class
that has a static method, some static variables, and a static initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {
static int a = 3;
static int b;
static void meth(int x) {
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);
}
static {
System.out.println("Static block initialized.");
b = a * 4;
}
public static void main(String args[]) {
meth(42);
}
}
As soon as the UseStatic class is loaded, all of the static statements are run. First, a is set to 3, then the static
block executes (printing a message), and finally, b is initialized to a * 4 or 12. Then main() is called, which
calls meth(), passing 42 to x. The three println() statements refer to the two static variables a and b, as well
as to the local variable x.

Note It is illegal to refer to any instance variables inside of a static method.
Here is the output of the program:
Static block initialized.
x = 42
a = 3
b = 12

Outside of the class in which they are defined, static methods and variables can be used

Unit 2: Inheritence, Abstract, Interface and Package

Prof. Dileep Kumar Sahu, Govt. V.Y.T. PG Auto. College Durg (C.G.)

independently of any object. To do so, you need only specify the name of their class followed by the dot
operator. For example, if you wish to call a static method from outside its class, you can do so using the
following general form:

classname.method();

Here,

1. classname is the name of the class in which the static method is declared.
2. This format is similar to that used to call non-static methods through object- reference variables.
3. A static variable can be accessed in the same way—by use of the dot operator on the name of the

class.
4. This is how Java implements a controlled version of global functions and global variables.

