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heat capacity of substance approaches infinity. Hence the transition from non-ferromagnetic g
ferromagnetic state is of second order. It is associated with some kind of change of symmetry of 1
the lattive. For example in ferromagnetism, the symmetry of spins is involved.

It may be noted that the phase transitions of second kind in contrast to ordinary first order
phase transition is continuous in the sense that the state of the body changes cnminuuusly.
Although the symmetry changes discontinuously at the transition point, at each instant, the body
belongs to one of the two phases. At a phase transition point of the kind, the bodies in twg
different states are in equilibrium while at a phase transition point of the second kind, the states of

the two phases are the same.

13.6 Critical Exponent

It is common experience that when the temperature of a substance is changed, the phase of
substance changes. For example water freezes at 273 K and boils at 373 K, both at a fixed pressure
of 1 atmosphere. If pressure is changed, these phase changes occur at different temperatures. We
can find the pressure and temperature where the substance can exist in either of two phases. For
example at T=373K and P=1 atmosphere, water can exist as a high density liquid or a low
density vapour. By the addition of latent heat at constant temperature and pressure, liquid is
converted into vapour. If temperature is increased, we may get a remarkable new region where
liquid and vapour coexist and the density difference between liquid and vapour goes to zero, so
that water and steam become indistinguishable. The region where liquid vapour coexistence
curve in T — P diagram terminates is called the critjcal re;ion. The critical phenomenon describe
characteristic behaviour observed in this region surrounding the critical point at (T¢, P’c). For
water critical point occurs at T=647K and P =218 atmosphere. The surface tension of water
because zero at critical temperature.
Criticgl behaviour has been identified in many systems. In addition to the water-steam ‘
system, h_qui‘d gas systems generally show critical behavio-ur where the density difference
between liquid and gas phase tends to zero. Other systems showing the critical behaviour are
ferromagnets, ferroelectrics binary liquid mixtures superfluids and super conductors. In many of
these systems one phase is ordered and the other’phase is disordered. It has become customary
for convenience to introduce a parameter which vanishes at cri}ical point and above it cailed order
parameter. For example for a liquid-gas system, the order parameter is chosen as the density
difference between the liquid and gas phases at g’iven point T, P on the co-existence curve, which

approaches zero according to

PL=Po=(Tc-TP T<Tc sty
where f is called the critical exponent,

Above the critical temperature the order parametcr is zero. For a ferromagnetic system, the
order parameter is the homogeneous magnetisation. The source of magnetisation is the spin
related magnetism of electrons in the unfilled d and f shells of transition metals such as iron, ’
cobalt and nickel. The interaction among electrons and the Pauli’s exclusion principle keeps like
spins separated. This results to lower energy for parallel spins. Below the critical temperature and
n the absence of external magnetic field, the thermodynamically stable state is one in which a
ignificant number of spins is aligned along a common direction, producing a net magnetisation,
bove critical temperature the thermal agitations result no residual macroscopic magnetisation if
iternal magnetic field H=0. In the critical region above the critical point T=T¢, H =0, the
acroscopic magnetisation is either quite small or zero depending on whether T is below or
ove T The common linkage between the behaviour of a liquid vapour critical system and a

romagnetic critical system is the dominance of fluctuations in critical regions.
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In addition to critical exponent 3, there are several other exponents given below : The critical
cxpon‘-‘nt a gives a relation for specific heat in the vicinity of critical temperature.

c= I (T-To) 1™ “ --(2)
The critical exponent yis related to the critical behaviour of generalised susceptibility.
2=V (T=-Tc) V77 ...(3)

The critical exponent & occurs in following two relations :
(a) The relation between external magnetic field and magnetisation at critical temperature

H=M:. T=Tc ...(4a)
(b) The relation between pressure and density at critical temperature
P—Pc~!(p—pc|6,T=Tc ...(4b)

These critical eéxponents are connected by scaling relations to reduce their independent
numbcrs e..g,
a+2B+y=2 Rushbrooke scaling law }
1 - .--(5)
T=p@E-1) Widom scaling law N
These law were initially derived as inequalities and then were converted to equalities by
scaling hypothesis. Several inequalities involving the critical exponents can be derived using
thermodynamical stability considerations. ;
For example specific heat at constant magnetisation Cpyand specific heat at constant magnetic

field Cy for a magnetic system are related as

CH“CM‘;T[g%]T[%M;L .--(6)

Thermodynamical stability requirements indicate that Cps is non-negative

oH aM
(55

T (oM
cnz7 (371,

For temperatures in the vicinity of critical temperature, we can make use of power law
dependence of Cyy, x and M on (T¢ - T), to obtain the inequility

Tc=T) "2A(Te~TY 172

But susceptibility x = ( aa—]: ]7-

where A is @ function independent of Tc — T and a and ¥ refer to critical exponents for Cy and ¥
forT < Tgc. Y

This gives 2D+y-22-a :
resulting in Rush boooke inequality a+2f+y22

13.7 Ising Model

i

The Ising model was set up to investigate the behaviour of substances ‘whose_molecule
. posses a_magnetic inomentj The model assumes that the significant interaction exists betwee
neighbouring molecules only.

j
1
|
i
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Let there be N particles arranged in the lattice and also the particles possess spin with
magnetic moment. The spins may be oriented in any of the two possible orientations either up A
or down B. Let their respective numbers be N, and N_, so that

N.+N_=N

Let the interaction energy (which is assumed between nearest neighbours only) of a pair of
two adjacent +'s or of two adjacent —’s be equal to &. The energy of an adjacent A and B is taken ag
zero. Then the energy levels of the system, assuming isotropic interaction, will be given by

E(o)=—-¢X 00;- ;
( l) <I“j) 7 uBH }l:'o,l' ...(1)

where o; is (up) +1 or (down) —1 and ppH is the interaction energy associated with externa]
magnetic field H.

For € > 0 the neighbouring spins tend to be parallel and ferromagnetism is possible. For stable
equilibrium the energy E, tends to be minimum. Hence the spontaneous configuration of least
energy is the completely polarised (ordered) configuration in which all the Ising spins are oriented
in the same direction. The configuration results at absolute zero temperature (i.e., T=0) when
there is no thermal agitation at all. For € <0, the neighbouring spins tend to be antiparallel and
antiferromagnetism results.

In equation (1) no distinction is made between i and j. The sum over «i, 7> has z (N/2) terms
where Z is the number of nearest neighbours of a site i.e., coordination number of the lattice and 1\;
is the number of spins.

.The partition function, which is essential for determination of thermodynamical quantities, is
given by
=x ¢ PEO©)
z (©) el
where 3 = (1/kT) and the sum is taken over oM possible combinations of N-spins.
It is rather difficult to calculate equation (2) exactlv, Several approximation methods have
been developed. Here we shall give Bragg Williams method which is the simplest.
Bragg-William’s Approximation Method : This approximation method assumes that the
distribution of spins is random. Let N, and N_ be the number of which g, is up (or + 1) and down

or (- 1) respectively.

N. N_
Then —- and  fepresents the probability of finding a spin up (+ 1) and down (= 1) on given

N
lattice site.
Then equation (1) becomes
1- N, N_ 2N,N_
E=~-zNe¢ (—f-r(—f— —pgH (N4, = N.) A ).
2 [ N N N2 +

where we have assumed N, > N_ in the last term.

N,
The number —; is a measure of the long-range order, as it requires no co-relation between

N
nearest neighbours. It only requires that in the entire lattice only a fraction (N,/N) of all the spins

are up. If (N;/N) is known in the neighbourhood of a given spin, then the same average value is

likely to occur everywhere on the entire lattice.
If ppg is the magnetic moment associated with the spin, then the total magnetic moment is

N=pp (N, -N.) . (4)

S e FE)

Scanned with CamScanner

R

i

et o e e A e e e e e S e R S



e
PHASE TRANSITIONS 565
U.Sing N = N+ + N_

X laemNo=ta—n

N =3 1+m.N_=5Q-m s

where m= M
Nug
1_
Then =-5zaNmz..uB Nin H ...(6)

Here mt is callod long-range order parameter,
m=Ne=N__ 2N,
N N - - -
The order parameter m is chosen depending on the problem e.g. it may be magnetisation 1.:1 a;
ferromagnetic.system_o.r fraction of superconducting electrons in a super conductor or a_mc{ux;‘a:e
displacement in transitions where atoms are displaced from their positions, in symmetrical p

etc.

-1,1<=m=-1

The'nutaber OLatranigesientsiof spins over the N sites is given by the number of ways of
choosing N,outof Ni.e.,

Qre N1 D)
BW="N,I(N-N!

From relation between entropy and probability
S=klog Qpw

N! }
AsN,+N_=Nie, N-N,=N_, we have

N1
S=kloge{N+!N_!}

=k (log, N! —log, N+ — 108, N_Y
Using Stirling approximationlog N!'= N log N — N.

we get
S=k[Nlog,N—N - N,log, N, + N, - N_loge N_+ N_]
=k [(N, +N_)log. N — N, log, N, — N_log. N}
=k [N, log, N + N_log. N — N, log. N, — N_loge N-]
=—k [N, (log, N, —log, N) + N_{(log, N_-log. N}l
- N, N. )
= k{l\!‘,log¢ N + N_log, N
- | g, NN, N
1€, 5—"1\”\[ N log, N TN log. N

1 1+ 1 1—m
=— Nk[—z— (1 +zn) log( ‘Zm o (1 —m) log£ 5 )}
Helmholtz free energy
F=E-TS
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P e Nm ~pgNmH-NiT -
e Nm —jip Nt log, 3

D
+5(1+m) |Og,” 4"")‘*1” ‘m)log'“
< 2 ""‘I)J

The equilibrium value of m or (N4 = Np) is determined by
F .
s—=01e,

s
i 1 11
= _ o = 14 -
e Nmt = g NH NlT[zlog,( me 2In&(hm) 1
T4m . ZCm+ppH \]
Al 2>
l0ge 1 kT y -

or
=2y F:
(say) where y . Zm :T“a H

It gives well known result of Weiss theory of ferromagnetis,
: M ¢ -1
me——= ~ ta
Nip 41 e
ment g

For H = 0, we get an expression for spontaneous magnetic m,
x&m
mg = tanh (x)} « 0 = tanh -ﬁ_ﬁ

Tem
mg = tanh —%_—S
where Tc= -zf- is critical temperature
M TQ
and ms=—,ﬁ (14) 2)
] el 6 |
Equation (12) can be solved graphically to obtain ms asa |, 3)

function of T in Bragg-William approximations (fig. 13.4). For this e,
the L.H.S. and R.H.S. are poltted separately as a function of T. The ’_4'- -------
5 3

intercepts of two curves gives the value of m at temperature of
. [

interest. It is clear tht the solution is mg=0 for Td and §

mg=m,0,—m for E> 1. But m=0 is unacceptable because it

corresponds to maximum of function F, instead of minimum. Thus
ms =0 for T>Tc and mg==m for T <Tc. The solution mg=1m

occurs because for H=0, there is no difference of spin up and

down.

3.8 One Dimensional Ising Model
The one dimensional ising model consists of a chain of N-spin, each spin interacting only with

5 two nearest neighbours. In the absence of any external magnetic field, the energy of the
: sareCEY

nfiguration specified by (03, 03 ... 0y) is given by
N
Ej=-¢ ‘Zl Ci Ci+1
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ol dpatanaiia
. . ange the chainof N —
convenient tO arranyi« of Nespip ——
1t 1s On ey ™ O | SInthe h‘h“ of o & —
AL J (T
the [\.\rtlhun tunction s ) B hiag L.
Z = > . X exp 4 . - :
oy =] On=tl it 'l‘n,n"“l\
Now keeping in mind that a0’ canbe t 1 ang S0 using
i 4 h
exXp (¢ 00') = (00"~ 1) \\_‘ A,
g e (00" -1 ‘t ‘% - 14*
= cosh ¢ + 00’ sinh ¢ Mot Ny 2D
we get ~ 5 (Fig. 1a.5)
= oo L MlcoshPe+aa sinh Pe
@ m ] oyt [ ﬁ 1Y +1 Pe) R & )
the expansion of products in (3) gives the sum of terms, each of which is the product of the form
N - , i
(cosh Be)” ~* (sinh Pe)' (0,041 --- T T+ 1) i)

these terms, may be displayed graphically by continuous and dotted _
links forming the ring. The continuous links correspond to factor
oo’ sinh Pe (say) and dotted link to factor cosh pe. : in

At a site when a continuous and a dotted link join, then :t:os et
occurs only once and the sum of two values +1 makes th¢ P s spin

i . i : iain it
zero, Whllc at the othur Site Wh(_!n two continuous hnkS IOI‘n
. non-zero

occurs squared and gives value +1 because a=1 Ant has N© ™.
contribution occurs when the chain of thick links, if B 'e)N and KO
ends. Thus the only non-zero terms are the first terms (cos

. _13.6)
the last (sinh Be)”, so their, partition function N .
N . €) ]
Z =2" {(cosh pe) * i A8
for = 2o
T#U,BE—H‘# weh""e
cosh pe > sinh fé - h £ T,
05 T L2
z=2N(c05hB‘)N=[zc ' 2C°5hﬁ)
<. Helmholtz free energy for the systemis NKT 109(
£ -“
The energy of system [ cos! ke
2 .
E::-_Tz.g_ E ——Tzi[-‘Nkloge ’/?} 3
FTT [E gl R
1 x| 2 Ak |

=NkT23y— 1

[2coshff} J
Pt
__Netanhi T
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,,(",,:“]_“H\ o i serbaringity i the Cajuiatio oof alale

i1 i
P - v bog (2, V) |

- ) (1)

o ) 5 ] F
and - bog 2 (2, V) |
r V & ¥ |
where Vs specific volume and Z is the grand partition function, 2 1s the fugaaty defined as
bl
-

P

Both 7 and Vare analytic (or regular) functions of 2 in complex z-plane and possess no real
yoots of the equation J (2, V) =0 This means the zeros of the function 7 (z, V) lie in complex
lsl.anr, with no root on positive real axis
When volume Voiincreases, the number of singulanities increases and their positions may shift
in the complex 7 plane. When Vs continuously increased and in the limit V — =, some of the
roots may converge towards the p.mlu e real asis Incthas limat the equation of state 1s given by -

FPe lim J ‘, log & (..\)]

V oag =

1
and - l:m I V3 Uo}. (z, V)| I
Now it is possible to lmd th(- pm.\nhlv signularities in the equation of state; these singularities

will represent the phase transitions
Consider a region R in complex Z-plane, containing a segment of real positive Z-axis and no
ition 22 <0

zero of Z (2, v) for all values of V. It is reesonable to think that when V — =, the condition YV

holds. In that case, the region under consideration represents single phase (i.e., no phase
g regions, each -

transition). If there exists a number of overlappin
region will correspond to a phase of the system. Thus to study o o
phase transitions, we have to investigate the behaviour of equation o
of state when z goes from one region to another. For such a study o R .
the two theorems stated bo.nw have extreme importance : o - z axis
values of B
= o

Theorem I : hm ' v lq,!(-,l’) exists for all

I z 1 >0. This Iimit is lndependont of shape of volume V and is

continuous non-decreasing fungtion of z. It is assumed that in the 5 .
limit V — oo, the surface area of volume considered, increases with 1
o

increase of V but no faster than V>
Theorem II : If R is a region in the complex z-plane which

contains a segment of positive real axis and contains no root of the o
equation Z (z, V) =0 for any volume V, then for all values of z

(b)
(Fig. 13.7)

J
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g 1 vl W a - i \
s
wpprvachies the pomnt oy on real posiine .
|
. he . "o |
.\\w&\\\ » then there wy — .
v . ' < N ‘i . |
pegons Ny wed K in whio b the Hheorem % ‘ i v
! ad
11 l‘““ i~ ! N
Atz = 2o B muast be continuons l 1
3 v ¢ . > # -
."' -y — - i p & .
thoush ats hiest denvanive S
! 3. . |
(a)
Jiscontunuous
) Ry
As an example  consuder  the (Fig. 1
g 3 @ . ”‘.,. ‘f, = 4 e .
Behaviour of system shown in hie The system possess one phase for Cand other pha " .
AN 4 miciiion Pwo anuse 31 ¢ w 4 . .
Al 2 =24, V) is discontinuous, thus we obtain the first order phase fra i o P ()
1”'(.:)
Ix continuous but - 15 discontinuons
ar
y
.‘_'J

d
’ »
On the other hand if first derivative d-’-!-l'} 15 continuous but second dervative » 1% i ontimyon
az 254

at = = 2o then we have second order phase transition,

Thus an equation of state is capable of exhibiting the phenomenon of phase trantition. The phase
transition occurs if a root z of equation 7 (z, V) = 0 upprmwhn a real positive z-axicin the limit V ., ...
The nature of phase transition is governed by the analytic behaviour of P (z)ynear such aroot of 2.

13.10 Landau Theory of Phase Transitions

‘g.:mdau gave a systematic theory of phase transitions applicable to a large variety of systems
undergoing such transitions. Consider systems at constant volume and temperature, so that their
Helmholtz free energy F = U - 1¢ is minimum in equilibrium INow question anises Fis minimum
with respect to which variable.|For simplicity Landau supposed that the system can be described
by a single order parameter x (say). The parameter may be the magnetisation of a teromagnetic
system, the dielectric polarisation in a ferroelectric system,|the traction of superconducting.
electrons in a superconductor etc. In thermal equilibrium the™Srder parameter has a certain value
x = xgp (T). '

G,andau assumed that x can be specified independently and the Landau free energy function
is i ’

Fr(x,y=U(x,t)—1t0(x, T) ...(i'

where energy and entropy are taken when the parameter has specified_value x which is no
necessarily xo‘The equilibrium value x; (1)’is that value of x at which the&i\ndau function Fp i

B VST R

Scanned with CamScanner



L THERMAL AND STATISTICAL PHYSICS

muinimum at a given temperature 1 (t=AT). The actual Helmholtz free energy I (1) of that system

at temperature Tis equal to that minimum r.e.,
F()=FL (0. DS FL(x, Dif v2xg ) o (2)

It Landau free energy function #p at a given 1, is plotted against x; then < may have more than one
minimum. The lowest of these determine the equilibrium state. In a first order transition the other minimum

becon.os the lowest minimum if temperature (1) 18 increased.

3~ : ~ 3y \d ol o N el g . . ’ . ot . . .

}:gr most ferromagnetic and h;n_‘.m lectric sy .\ltmﬁl the Landau function is an even function of x; we
restrict ourselves to such systems. (We also assume that the Landau function FL (x. ©) is sufficiently well

hehaved function of v and it can be expanded as a power series in v. For even function of x, F; may be

c\pmsscda.g
FLOGCD=fo D+ madse d A
/o 22O+ (a7 + . (3

. o f > ... are expans coefficionts T
where _fq (U,_f__ (1), f4(7) € expansion coe ffl(.lt"nti} the entire temperature dependence of Fi(x,1)
is contained in these coefhc:ent_g The simplest example of phase transition ogcurs when f; (1)
changes sign at a temperature To, with fy positive and higher terms negligiblc@’or simplicity we
assume f3 (7) linear in T over specified temperature range in the form

LM=(-10a ()
and take fy as a constant in that temperature range. With these ideal limitations.
1 1 v
FLED=f@+3a@-t0x + 4 ;J .(5)

The assumed equation (4) can not be accurate over a very wide temperature range and it certainly fails
at low rtemperatures because such a linear dependence is not consistent with the third law of

thermodynamics.

CFor cquilibrium value of x. 7 should be minimum. For this we differentiate equation (5) with respect
to rat given T and but equal to zero i.e., )
dFy
(%] =0
(%2) L (r-rpax+fer’=0
T Aaliee thx = o |
t ax (6)
This gives

x=0 or 12=(to—t)((—! —
fa

“— Wuth a and f; positive, the root x =0 corresponds to the minimum of the free energy function (5) at

temperature above T at this position Helmholtz free energy is
r F(t)=/fy(7) .« (B)

> (h—-7a s ‘
s__The other root of x given by x™ = s corresponds to the minimum of the free energy function at

temperatures belaw 1,0 at this position the Helmholiz fiee energy is given by
—

Scanned with CamScanner



B ————————————————————

PHASE TRANSITIONS

2 "
F (t) =fo (T) - ;‘ﬁltt-m’ A..(‘Jﬂ

The temperature dependence of F() for an idealised phmh
transition of second order 1s shown infig (), whl e viaion

Landau free energy with i T shown in Fig (b), From fig (b) 115
clear that at a temperature below 1 the equlibum vilie of 1
gradually Increascs.

This model describes a phase rnsition in which the value of
order parameter approaching zero continouly as (e lenperau

y oF . :
increased to Tg. The entropy o= — L continuaus at =480 érE : :
. = -
is no latent heat at transition termpentue 1, sich  frsilon 8 : ﬁeﬂ —
e ——

second order transition
Landau Theory of first order Tnnsition

The transitions with a non-zern lae b i alled i 0
transitions. The liquid-gas lfan%fnnnanrmatcnnslnmpnssufcisaﬂh.r}
first order phase transition. The firt order phase ranstor e
common in ferroelectric crystals and mneds el |
describes a first order transition “hfﬂlhttxpansmncmfﬁcwﬂlﬁ" fler

negative and fg is positive.

1
Let F (x, T) =fo (3) +% a(z -'.mxz-i 1
0

The extremum of this functinnxcpvcnby%&:ﬂ
0

) 15’0
- ﬂ(t-n;)x-lf;[ﬂ“*!ﬁ
This gives either x =0
1,30
o c (s-19- 1011
| _4{,,0((

= 2. eI
%
The plot of Landau function ve ' o fust o0
transition 1s shown in Fig.

At transiion temperature 1, the ,mmgw,u
be equal for the phases for x«0ug 'L‘”E!\'mb‘fﬂf(l,r]
(b) (say x = xa). L

The value of transition ttrr-maturemsnqu‘”]
to o and the first arder parameerdos ol "
cunlintmusl_\- at <.

For t below T, the minimumigy mmﬂue"”e' m

-

put when T> . there is a disontinos dargt ?
Positmn of minimum.
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THERMAL AND STATISTICAL PHYSICS

These results differ from second order transition when x goes to zero continuously at g =1,
morcover a tirst order transition may show hysteresis as in supercooling or supersaturation but
there i1s no hysteresis etfect in second order phase transition.

EXERCISES

SHORT ANSWER QUESTIONS

1. What do you mean by triple point ? What is the value of triple point of water ?
2. Is triple factor of a substance unique ? Explain.

-

3. What are the two factors taken into account to derive the Vanderwaal’s equation ? Write
Vanderwaal’s equation of state.

4. What are the conditions to obtain critical point in Vanderwaal’s equation of state ? Express

thermodynamic coordinates at critical point in Vanderwaal’s equation.

Give four characteristics of matter near critical point.

W

What do you mean by first order and second order phase transitions ? Give examples.
Write Ehrenfest’s equations for phase transitions.

What are critical exponents ? Give Rush broove inequality regarding critical exponents,
What is Landau function ? What is its value at equilibrium ?

® A

S

Plot curves for Landau function versus variable parameter x* for first order transitions and
state important characteristics.

LONG ANSWER QUESTIONS

1. What do you mean by first order and second order phase transitions ? Give a clear
distinction between them.

2. Derive Vanderwaal’s equation of state and find the thermodynamic coordinates of critical
point.

3. What do you mean by the triple point of a substance ? Show that the triple point of a
substance is unique.

4. What do you mean by critical exponent ? Introduce various critical exponents known to
vou ? Are they quite independent ?

5. What are phase transitions of first and second kind? Discuss Ising model for phase
transitions of second kind. (Meerut 2003)

6. What do vou mean by cooperative phenomenon ? Explain Ising model ? Use

Bragg-Willium approximation method to obtain expressions for entropy and free energy

under this model. (Meerut 2006, 2001)

Give a brief account of one-dimensional Ising model.

8. What are phase transitions and critical indices ? How Yang and Lee theory may be used to

=

explain phase transition. (Meerut 2005, 2002, 01)

9. Give Landau theory of phase transitions. (Meerut Univ. 2005)
10. Wnite short notes on :

(a) Phase transitions of three matter states (Meerut 2006)

(b) Ising model (Meerut 2001)

(c) Yang and Lee theory (Meerut 2003)

(d) Landau theory (Meerut 2001)
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PHASE TRANSITIONS
—'_-_-__7

MULTIPLE CHOICE QUESTIONS
—_—

Select the right choice
\ 1. Triple point of a substance
(a) is unique

(b) has t values (c) has three values (d) does not Exist
as two value :

2. The correction term —93 in Vanderwall’s equation is due to:

ion effect(d) all of aboye
(a) finite size of molecules (b) intermolecular forces (c) surface tens hL
3. The Vanderwaal’s gas obey perfect gas equation

. and low tempe
: b) at high pressure Peratures
(a) always ( ssure and low tem
- (c) at high pressure and high temperature (d) at low pre P
4. Vanderwaal’s equation when solved for pressure P has: a :
(a) one root only (b) two roots only (c) three roots only (d) unique vajye
5. The critical temperature for Vanderwaal’s is : 8
a 1a o2 (d) o= ==
@ &g B 5 =5 27 Rb , 27 Rb
) i uris:
6. Conversion of boiling water at 1 atmosphere and 100 C‘ in vapv:: o
(a) zero order phase transition (b) f;r‘:st Urd;r ph}z:se trtansn'lc?n
(c) second order phase transition (d) third graephassistasition
7. Clausius Clapeyon'’s equation holds for : i N ...
(a) first order phase transjition (b) Sec?ond order phase transition
(c) both (a) and (b) (d) neither (a) nor (b)
8. The density and entropy changes suddenly . i
(a) in first order phase transition (b) in second order phase transition
(c) both in first order and second order phase transitions
(d) Neither in first order nor in second order phase transitions
2 9. The first derivative of Giib’s function is continuous in:
(a) first order phase transition (b) second order phase transition
(c) both in first order and second order phase transitions
(d) neither in first order not in second order phase transition
10. The Landau function in specified temperature range may be expressed as FL (x, T) =
(@) fo(o)+a(x- 10)% x* (b) fo (1) + o (x—T0) x*
(©) fo (D) + (=10 +B (T —10)" + ... (d) fo (1) + 15 o (t-10) + %fu‘
11. The Landau function for parameter x at given temperature usually has:
(a) one root only (b) two roots (¢) three roots (d) unique value
12. Landau curves for Fr (x, 1) against x* meet : :
(a) at x =0 only (b) at x # O only (c) both (a) and (b) (d) neither (a) nor (b)
' ([ ANSWERS R
' ' 1. (a) - 2.(b) 3.(b) 4. () 5. (d) 6. (b) 7.(a) 8. (a)
| a. (b) 10.(d)  1L(0)  12.(a)
.
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